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Abstract

I illustrate a novel method for pricing assets within recursive utility mod-

els in continuous time, that has first been used in Melissinos (2023). My

method builds on the analytic solution of Tsai and Wachter (2018). While

their solution is valid for a value of the intertemporal elasticity of sub-

stitution, ψ, equal to 1, I provide the full perturbation series in terms of

ψ, which gives rise to a global perturbation approximation. This allows

the pricing of assets for a much larger range of values for ψ, which are

economically meaningful. I comment on the convergence properties of

the perturbation series, and I show that the method provides a straight-

forward and reliable approach to asset pricing. I employ my method to

derive prices of long-term bonds, the price consumption ratio and the

instantaneous return of the consumption perpetuity.
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1 Introduction

Even though utility functions with time-separable utility are most often used

in the literature, recursive utility models are also popular, as they can describe

more general preferences and behaviours. Indeed some models seem to require

the use of recursive utility, for example Bansal and Yaron (2004) and Wachter

(2013), in order to produce important features of the data (yyy). Recursive

utility models in continuous time were introduced by Duffie and Epstein (1992b)

and an important literature describing their properties has since followed, for

example Duffie and Epstein 1992a; Duffie, Schroder and Skiadas 1996; Schroder

and Skiadas 1999. However, solving these models in continuous time remains

challenging. Recently, Tsai and Wachter (2018) suggested a method for pricing

long-term assets using recursive utility in continuous time. In this paper, I

introduce a perturbation method that is based on the analytical solution that

Tsai and Wachter (2018) found.

The main underlying assumption of the method by Tsai and Wachter (2018) is

that the intertemporal elasticity of substitution (IES) is equal to 1. While the

authors claim that their solution can also be used for other IES values, it is not

a priori obvious under which conditions this is true. In this paper I use their

analytical solution as a base case and then perform a perturbation expansion

around the IES value of 1. This allows me to get a solution that is valid for a

large range of IES values and evaluate the accuracy of the approximation offered

by Tsai and Wachter (2018). My approach is based on the perturbation theory

described in Bender, Orszag and Orszag (1999), which has also been advanced

in economics and finance by Judd (1996). Related literature includes Caldara,

Fernandez-Villaverde, Rubio-Ramirez and Yao (2012), who solve DSGE models

with recursive utility in discrete time. To the best of my knowledge, apart from

Melissinos (2023) which uses the method described in this paper to solve long-

run risk models and rare disaster models, Leisen (2016) is only one other paper

that uses perturbation theory to solve recursive utility models in continuous

time in a similar setup to what I examine here. However, unlike the current

paper, Leisen (2016) looks at a model that also includes portfolio selection and

the IES parameter is not the basis of the perturbation.

Once the value function is derived based on the perturbation approximation, I
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can derive the stochastic differential equation form of the stochastic discount

factor (SDF), following the derivation of Chen, Cosimano, Himonas and Kelly

(2009). Then I can proceed to solve the partial differential equation that is

associated with the pricing of the long-term zero-coupon bond. In addition,

quantities like the price-dividend ratio, the wealth-consumption ratio and the

price of dividend-bearing securities can also be computed. I solve the pricing

equation for the long-term bond by using the Feynman-Kac formula, which I

implement through Monte Carlo simulations.

The rest of the paper is organised as follows. Section 2 introduces the general

framework including the recursive utility component, Section 3 introduces the

perturbation expansion, Section 4 performs the pricing of the long-term bond

based on the previous results, and Section 5 concludes.

2 Recursive Utility Framework

This section closely follows the framework introduced by Tsai and Wachter

(2018). For simplicity, I introduce my method using only one state variable. In-

troducing multiple state variables is straightforward based on the single-variable

case.

2.1 Consumption process

The consumption process has two components: a deterministic trend and a

Brownian motion component:1

dCt
Ct

= d log(Ct) = dct = µctdt+ σctdZct (1)

where the t subscript denotes variables at time t,2 Ct is consumption flow, ct

is log consumption flow, xt is the state variable characterising the economy, µct

is the deterministic consumption trend, σct determines consumption volatility

1Here, for simplicity, I assume that consumption does not undergo discontinuous jumps
(with probability 1), but my solution method can be extended to the case, in which the
consumption process includes Poisson jumps.

2For generality I use a subscript t for all symbols that can correspond to variables. How-
ever, in some variations these symbols may also correspond to parameters.
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and Zct is the Brownian motion component. µct and σct are either parameters

or they depend on the state variable.

2.2 State variable

Similar to consumption, the state variable also has two components:

dxt = µxtdt+ σxtdZxt (2)

Here, xt denotes the state variable, and the functions and parameters are anal-

ogous to the case of consumption.

2.3 Utility

Lifetime utility at time t0 is:3

Vt0 = Et

[∫ ∞

t0

f(Ct, Vt)dt

]
(3)

This equation highlights why utility is referred to as ”recursive”, as the integrand

depends on the current value of the agent at each point in time. The combination

of the consumption flow with the concurrent lifetime utility takes place via the

so-called aggregator function:4

f(C, V ) =

(1− γ)ρV

((
C((1− γ)V )−

1
1−γ

)1− 1
ψ − 1

)
1− 1

ψ

(4)

This function represents a flow which depends both on current consumption

flow, Ct, and on the current level of the value, Vt. ρ denotes a time preference

parameter, γ denotes the risk aversion parameter and ψ denotes the intertem-

poral elasticity of substitution (IES). Recursive utility is a useful modelling tool

because it allows the separation of the risk aversion parameter from the IES

parameter. This utility specification reduces to the more familiar time-additive

3Following Tsai and Wachter (2018) I do not prove existence and uniqueness of my so-
lution. Hence, I use the infinite horizon case for simplicity. When considering a proof of
existence and/or uniqueness, a finite horizon may be easier to deal with.

4This is the normalised form of the aggregator in Duffie and Epstein (1992b)
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case when γ = 1/ψ. In this case the agent is indifferent about when uncertainty

is resolved. For more general parameter specifications the agent may exhibit a

preference for late or early resolution of uncertainty. In particular, for γ > 1/ψ

(γ < 1/ψ) there is a preference for early (late) resolution of uncertainty. The

intuition for this mechanism can also be explained differently. In particular,

γ > 1/ψ implies that:

∂2f (C, V )

∂C∂V
< 0 and

∂3f (C, V )

∂C2∂V
> 0 (5)

⇒ Et

[
∂f(C, Vt)

∂C

]
< Et

[
∂f(C,Et+1[Vt])

∂C

]
(6)

On the right-hand side, the notation means that the agent has been given early

information about the state of the world in t+1, while on the left-hand side this

is not the case. It follows that the ex-ante expectation of these two situations

leads to a preference for early resolution of uncertainty, as the utility flow is

expected to be higher, in a state where the agent has early knowledge. The

opposite is true in the case of a preference for late resolution of uncertainty.

The mathematics of the situation is similar to the case, in which a risk-averse

agent prefers a safe sum of money to a risky lottery with the same expected

value. So, it is crucial for the preference of early resolution of uncertainty

that consumption becomes less enjoyable as the value of the agent increases.

Notice that this is not the familiar diminishing marginal utility of consumption.

Instead, this implies that the same quantity of consumption is less enjoyable

when the agent becomes happier for reasons that are not related to current

consumption, for example, she may have learned that expected consumption in

the future has increased and this makes her current consumption less enjoyable.

2.4 Decomposition of the value function

In the recursive utility framework, there exists a scale invariance property Duffie

and Epstein (1992b), which allows us to express the value of the agent in a way

that separates the dependence on consumption from the dependence on the

state variable. As shown in Benzoni, Collin-Dufresne and Goldstein (2011) and
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Tsai and Wachter (2018), the value function can be written as:

V =
C1−γeK(x)(1−γ)

1− γ
(7)

Where K(x) satisfies the following differential equation:5

ρ
ψ

1− ψ

(
1−e(1/ψ−1)K(x)

)
−γσ

2
ct

2
+µct+

σ2
xt

2
K ′′(x)+µxtK

′(x)+
(1− γ)σ2

xt

2
K ′(x)2 = 0

(8)

A proof of this result is included in Appendix A.1.6

2.5 Functional forms for consumption and state variable

processes

The asset pricing problem based on the above setup is generally not easy to

solve. However, Tsai and Wachter (2018) showed that significant progress can

be made under the following specification for the consumption process and the

process of the state variable:

µct = µc0 + µc1xt

σct =
√
σc0 + σc1xt

µxt = − log(ϕ)(µx0 − xt)

σxt =
√
σx0 + σx1xt

(9)

These parameters on the right hand side can be chosen. Notably, this specifica-

tion is particularly useful because plugging these expressions into Equation (8)

produces linear terms in x.

5This equation is also valid for ψ = 1, in which case the expressions are replaced by their
limits.

6A very similar result is also proven by Tsai and Wachter (2018).
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3 Method Description

3.1 Exact Solution for ψ=1

As Tsai and Wachter (2018) Equation 8 has an exact solution for ψ = 1. In par-

ticular, after the parametrisation from Expressions (9) is used, the differential

equation becomes:

−ρK(x)− 1

2
γ (σc0 + xσc1) + µc0 + xµc1 +

1

2
K ′′(x) (xσx1 + σx0)− log(ϕ)K ′(x) (µx0 − x)

−1

2
γK ′(x)2 (xσx1 + σx0) +

1

2
K ′(x)2 (xσx1 + σx0) = 0

(10)

and the solution takes the form, K(x) = a0,0 + a0,1x. The coefficients, a0,0 and

a0,1 can be solved by sequentially solving the following equations:

0 =− ρa0,0 −
1

2
γa20,1σx0 − a0,1µx0 log(ϕ) +

1

2
a20,1σx0 −

γσc0
2

+ µc0

0 =− ρa0,1 −
1

2
γa20,1σx1 +

1

2
a20,1σx1 + a0,1 log(ϕ)−

γσc1
2

+ µc1

(11)

The second equation is solved first as it only includes parameter a0,1. Then

using this solution the first equation can also be solved.7

a0,1 =−
ρ− log(ϕ)±

√
2(γ − 1)µc1σx1 − (γ − 1)γσc1σx1 + (ρ− log(ϕ))2

(γ − 1)σx1

or if σx1 = 0

a0,1 =
2µc1 − γσc1
2ρ− 2 log(ϕ)

a0,0 =−
γa20,1σx0

2ρ
− a0,1µx0 log(ϕ)

ρ
+
a20,1σx0

2ρ
− γσc0

2ρ
+
µc0

ρ

(12)

Tsai and Wachter (2018) use this solution to derive analytical expressions for

the pricing of long-term assets, when ψ = 1. They also use these results to

derive approximate expressions for the case when ψ ̸= 1.

7When σx1 ̸= 0, then a0,1 has a double solution. However, only one of the two solutions is
economically meaningful. This duplicity is explained by the existence of the square root and
by the fact that the state variable can be defined to be an increasing or decreasing function
of the state variable.
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3.2 Extension of the method to the case ψ ̸= 1

3.2.1 General description

In this paper, I extend the above solution method, in order to allow the param-

eter for IES to take a large range of values. As is common with perturbation

solutions, instead of solving the problem for a specific value of ψ for which

there is no analytic solution, the problem is redefined and solved for arbitrary

ψ. This may seem as more difficult, but since the solution for ψ = 1 is already

known, the perturbation solution provides a way to start from the solution that

is known, and then gradually move towards a solution that is valid for any ψ.

I achieve this by re-expressing ψ in terms of ϵ and expanding the problem in a

series of ϵ. In particular, ψ is replaced by 1
1−ϵ and the expansion of ψ in terms

of ϵ is:

ψ =
1

1− ϵ
= 1 + ϵ+ ϵ2 + ϵ3 + . . . (13)

The redefinition in terms of ϵ is convenient because the analytic solution occurs

for ϵ = 0, and this makes the power series of K(·) considerably simpler. As

above, I proceed by guessing the series solution of the differential equation (10):

K(x, ϵ) =
∞∑
n=0

ϵn

(
n+1∑
m=0

an,mx
m

)
=(a0,0 + a0,1x)

+ ϵ
(
a1,0 + a1,1x+ a1,2x

2
)

+ ϵ2
(
a2,0 + a2,1x+ a2,2x

2 + a2,3x
3
)

+ ϵ3
(
a3,0 + a3,1x+ a3,2x

2 + a3,3x
3 + a3,4x

4
)

. . .

=K0(x) +K1(x)ϵ+K2(x)ϵ
2 + . . .

(14)

In the remaining of the paper I refer to the approximations according to the

highest power of ϵ. For example the approximation that only maintains the first

line of Equation (14) is the “zeroth” order approximation. The approximation

that maintains the first two lines is the “first” order approximation and so on.

The structure of the solution is a polynomial both in terms of x and in terms

of ϵ. In particular, for each successive order of ϵ the order of the polynomial in
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terms of x that is multiplying it increases by one. As it turns out, the solution

of Tsai and Wachter (2018) corresponds to the zeroth order of the series. This

makes sense given that ϵ = 0 simplifies to the previous case, namely ψ = 1.

The other higher polynomials in x are new and they will show what the effect

is from moving away from IES equal to 1. Thus, by replacing ψ with 1
1−ϵ , then

plugging in the guess and expanding in terms of ϵ, Equation (10) becomes:

0 =− 1

2
γ (σc0 + xσc1) + µc0 + xµc1 − ρK0(x)− log(ϕ)K ′

0(x) (µx0 − x)− 1

2
γK ′

0(x)
2 (xσx1 + σx0)

+
1

2
K ′

0(x)
2 (xσx1 + σx0) +

1

2
K ′′

0 (x) (xσx1 + σx0)
)

ϵ
(
− ρK1(x)− log(ϕ)K ′

1(x) (µx0 − x)− γK ′
0(x)K

′
1(x) (xσx1 + σx0) +K ′

0(x)K
′
1(x) (xσx1 + σx0)

+
1

2
K ′′

1 (x) (xσx1 + σx0)
)

ϵ2
(
− ρK2(x)− log(ϕ)K ′

2(x) (µx0 − x)− 1

2
γK ′

1(x)
2 (xσx1 + σx0)

− γK ′
0(x)K

′
2(x) (xσx1 + σx0) +

1

2
K ′

1(x)
2 (xσx1 + σx0) +K ′

0(x)K
′
2(x) (xσx1 + σx0)

+
1

2
K ′′

2 (x) (xσx1 + σx0)
)

(15)

In the expression above I have still not inserted the a.,. parameters in detail,

in order to not clutter the overall expression too much. Nevertheless, it can be

seen that for this equation to hold for all values of ϵ, we need the coefficient for

each power of ϵ to be equal to 0. Subsequently, each of these coefficients includes

the Kn’s and their derivatives, which contain polynomials of x. Following the

same strategy, for these polynomials to be equal to 0 for all values of x, the

corresponding coefficients also need to equal 0. Combining the two stages, this

implies that for each pair of powers for ϵ and x, that show up in Equation

(14), there is a corresponding equation that allows us to compute the respective

coefficient.8 In addition, each of these equations turns out to be linear and

sequentially solvable given the solutions of the previous equations.9 The order

for solving the equation increases with the powers of ϵ and decreases with the

8Another way to think of this is the following: For each n power of ϵ, there is a linear second
order differential equation for Kn(·) which can be solved sequentially using the solutions of
the previous differential equations.

9The only exception is parameter a0,1 which was already mentioned above and might
require the solution of a second order equation.
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powers of x. Namely, the parameters are found in the following order:

a0,1, a0,0, a1,2, a1,1, a1,0, a2,3, a2,2, a2,1, a2,0, . . . (16)

Given that each parameter requires the solution of a linear equation, it is easy to

solve the model for high orders of approximation. However, for each order of ϵ

the number of parameters increases by one and the equation become increasingly

complicated. As a result, roughly fifteen orders of approximation in terms of

ϵ can be found relatively quickly (this corresponds to 135 distinct parameter

values).

3.2.2 First order approximation

Finding the first order approximation requires the solution of the following equa-

tions:

0 = −ρa1,2 − 2γa0,1a1,2σx1 + 2a0,1a1,2σx1 + 2a1,2 log(ϕ)

0 = −ρa1,1 − 2γa0,1a1,2σx0 − 2a1,2µx0 log(ϕ) + 2a0,1a1,2σx0 − γa0,1a1,1σx1

+ a0,1a1,1σx1 + a1,2σx1 + a1,1 log(ϕ)

0 = −ρa1,0 − γa0,1a1,1σx0 − a1,1µx0 log(ϕ) + a0,1a1,1σx0 + a1,2σx0

(17)

whose solutions are:

a1,2 =
ρa20,1

2 (2γa0,1σx1 − 2a0,1σx1 + ρ− 2 log(ϕ))

a1,1 =
ρa0,0a0,1 − 2γa1,2a0,1σx0 − 2a1,2µx0 log(ϕ) + 2a1,2a0,1σx0 + a1,2σx1

γa0,1σx1 − a0,1σx1 + ρ− log(ϕ)

a1,0 =
ρa20,0 − 2γa0,1a1,1σx0 − 2a1,1µx0 log(ϕ) + 2a0,1a1,1σx0 + 2a1,2σx0

2ρ

(18)

As can be seen above, the values of all parameters can be found by plugging in

the previous solutions.

10



3.2.3 Second order approximation

The solution of the second order proceeds similarly. The equations to be solved

are the following:

0 =
1

6
γρa30,0 −

1

6
ρa30,0 − γρa1,0a0,0 + ρa1,0a0,0 +

1

2
γ2σx0a

2
1,1 − γσx0a

2
1,1 +

1

2
σx0a

2
1,1 + γρa2,0

− ρa2,0 + γ log(ϕ)µx0a2,1 − log(ϕ)µx0a2,1 + γ2σx0a0,1a2,1 − 2γσx0a0,1a2,1 + σx0a0,1a2,1

− γσx0a2,2 + σx0a2,2

0 =
1

2
σx1a

2
1,1γ

2 + 2σx0a1,1a1,2γ
2 + σx1a0,1a2,1γ

2 + 2σx0a0,1a2,2γ
2 − σx1a

2
1,1γ +

1

2
ρa20,0a0,1γ

− ρa0,1a1,0γ − ρa0,0a1,1γ − 4σx0a1,1a1,2γ + ρa2,1γ − log(ϕ)a2,1γ − 2σx1a0,1a2,1γ

+ 2 log(ϕ)µx0a2,2γ − σx1a2,2γ − 4σx0a0,1a2,2γ − 3σx0a2,3γ +
1

2
σx1a

2
1,1 −

1

2
ρa20,0a0,1

+ ρa0,1a1,0 + ρa0,0a1,1 + 2σx0a1,1a1,2 − ρa2,1 + log(ϕ)a2,1 + σx1a0,1a2,1 − 2 log(ϕ)µx0a2,2

+ σx1a2,2 + 2σx0a0,1a2,2 + 3σx0a2,3

0 = 2σx0a
2
1,2γ

2 + 2σx1a1,1a1,2γ
2 + 2σx1a0,1a2,2γ

2 + 3σx0a0,1a2,3γ
2 +

1

2
ρa0,0a

2
0,1γ

− 4σx0a
2
1,2γ − ρa0,1a1,1γ − ρa0,0a1,2γ − 4σx1a1,1a1,2γ + ρa2,2γ − 2 log(ϕ)a2,2γ

− 4σx1a0,1a2,2γ + 3 log(ϕ)µx0a2,3γ − 3σx1a2,3γ − 6σx0a0,1a2,3γ − 1

2
ρa0,0a

2
0,1

+ 2σx0a
2
1,2 + ρa0,1a1,1 + ρa0,0a1,2 + 2σx1a1,1a1,2 − ρa2,2 + 2 log(ϕ)a2,2 + 2σx1a0,1a2,2

− 3 log(ϕ)µx0a2,3 + 3σx1a2,3 + 3σx0a0,1a2,3

0 =
1

6
γρa30,1 −

1

6
ρa30,1 − γρa1,2a0,1 + ρa1,2a0,1 + 3γ2σx1a2,3a0,1 − 6γσx1a2,3a0,1 + 3σx1a2,3a0,1

+ 2γ2σx1a
2
1,2 − 4γσx1a

2
1,2 + 2σx1a

2
1,2 + γρa2,3 − ρa2,3 − 3γ log(ϕ)a2,3 + 3 log(ϕ)a2,3

(19)
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And the solutions are:

a2,3 =−
ρa30,1

6 (3γa0,1σx1 − 3a0,1σx1 + ρ− 3 log(ϕ))
+

ρa1,2a0,1
3γa0,1σx1 − 3a0,1σx1 + ρ− 3 log(ϕ)

−
2γa21,2σx1

3γa0,1σx1 − 3a0,1σx1 + ρ− 3 log(ϕ)
+

2a21,2σx1

3γa0,1σx1 − 3a0,1σx1 + ρ− 3 log(ϕ)

a2,2 =− 3a2,3µx0 log(ϕ)

2γa0,1σx1 − 2a0,1σx1 + ρ− 2 log(ϕ)
+

3(1− γ)a2,3a0,1σx0
2γa0,1σx1 − 2a0,1σx1 + ρ− 2 log(ϕ)

+
2(1− γ)a21,2σx0

2γa0,1σx1 − 2a0,1σx1 + ρ− 2 log(ϕ)
−

ρa0,0a
2
0,1

2 (2γa0,1σx1 − 2a0,1σx1 + ρ− 2 log(ϕ))

+
ρa1,1a0,1

2γa0,1σx1 − 2a0,1σx1 + ρ− 2 log(ϕ)
+

2(1− γ)a1,1a1,2σx1
2γa0,1σx1 − 2a0,1σx1 + ρ− 2 log(ϕ)

+
ρa0,0a1,2

2γa0,1σx1 − 2a0,1σx1 + ρ− 2 log(ϕ)
+

3a2,3σx1
2γa0,1σx1 − 2a0,1σx1 + ρ− 2 log(ϕ)

a2,1 =− 2a2,2µx0 log(ϕ)

γa0,1σx1 − a0,1σx1 + ρ− log(ϕ)
+

a2,2σx1
γa0,1σx1 − a0,1σx1 + ρ− log(ϕ)

+
2(1− γ)a1,1a1,2σx0

γa0,1σx1 − a0,1σx1 + ρ− log(ϕ)
+

2(1− γ)a0,1a2,2σx0
γa0,1σx1 − a0,1σx1 + ρ− log(ϕ)

+
3a2,3σx0

γa0,1σx1 − a0,1σx1 + ρ− log(ϕ)
+

(1− γ)a21,1σx1

2 (γa0,1σx1 − a0,1σx1 + ρ− log(ϕ))

−
ρa0,1a

2
0,0

2 (γa0,1σx1 − a0,1σx1 + ρ− log(ϕ))
+

ρa1,1a0,0
γa0,1σx1 − a0,1σx1 + ρ− log(ϕ)

+
ρa0,1a1,0

γa0,1σx1 − a0,1σx1 + ρ− log(ϕ)

a2,0 =− a2,1µx0 log(ϕ)

ρ
+

(1− γ)a21,1σx0

2ρ
+

(1− γ)a0,1a2,1σx0
ρ

+
a2,2σx0
ρ

− 1

6
a30,0 + a1,0a0,0

(20)

As can be seen above, the expressions become complicated fast. However, it is

straightforward to use a computer to derive higher orders of approximation, at

least up to the point that it is also too much for the computer.

3.3 Convergence

Regarding convergence the problem constitutes a regular perturbation problem

(Bender et al. 1999). So, the series has a non-vanishing radius of converges

around ϵ = 0 for each x. This is known rigorously but it is not clear exactly

what the radius of convergence is. Based on the definition of K in Equation

12



(14) some conclusions can be drawn. Firstly, a finite order of approximation will

never work for all x. As x goes to ±∞, the highest power of x will necessarily

blow up, in a way that does not correspond to the approximated function, as

the highest power of x changes for each order of approximation. Furthermore,

something can also be said regarding the convergence of the series. On the one

hand, for small x, only parameters of the form an,0, n = 0, 1, 2, 3, . . . matter

for the approximation. So, if their growth rate is slower than the decay rate of

ϵn, then the approximation will converge. On the other hand, if x is not very

small, then the parameters of the form an,n+1, n = 0, 1, 2, 3, . . . will matter for

convergence, and the approximation will converge, if the growth rate of these

parameters is slower than the decay rate of (ϵ × x)n. So, then the question is

whether we can deduce the growth rate of these parameters.

Indeed the parameters follow some patterns, that can already be seen in the

expression that I provided in the previous subsection. Firstly, the parameters of

the form an,n+1, with n = 0, 1, 2, . . . are determined recursively based on other

parameters of the same form, an′,n′+1, with n = 0, 1, 2, . . . and n′ < n. Thus,

these “diagonal” parameters can be computed independently. In addition, the

pattern of products implies that any parameter of the form an,n+1 for each

n includes terms containing a0,1 raised at most to the power n + 1. In fact,

something similar holds for all parameters of the nth order approximation. In

particular, when a parameter an,m is written in terms of a0,0 and a0,1, each term

in the corresponding expression contains combinations of powers of these two

initial parameters, and the sum of the powers is always less or equal to n + 1.

This can be seen, for instance, in Figure 1.10

This indicates that as long as the following conditions jointly hold the series

will converge:

• ϵn decays faster than the growth of a
(n+1)
0,1

• ϵn decays faster than the growth of an0,0

• (ϵx)n decays faster than the growth of an+1
0,1

10Here I set γ = 1. This facilitates some simplifications. In the general case and as long as
the exact growth properties are considered an extra factor would arise, as in each step going
from m + 1 to 0 there are terms that contain an extra power of a0,1 both in the numerator
and in the denominator. This would affect the third case that I show below.

13



Figure 1: Series Coefficients – Variation: Time-varying consumption
volatility.
This shows the value of the parameters in terms of a0,0 and a0,1. The first row
and first column show the corresponding power of x and ϵ respectively. The nth
power of ϵ and mth power of x correspond to an,m. It can be seen that the highest
power of a0,0, a0,1 or the higher sum of their powers for the parameters in the
nth order approximation is n+ 1. The calibration used is also labeled.
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Even though these conditions are mostly reliable, they are not exact, as the se-

ries can converge when the conditions are violated, and it can also diverge when

the conditions hold. In order to prove the exact conditions for convergence, a

more extensive analysis needs to be made of the combinatorial structure of the

problem, so that the growth rate of the coefficients can be exactly determined.

However, in practise these conditions are good indications regarding conver-

gence, which can practically be checked by looking at the first partial sums of

the series. Figure 2 shows these partial sums for the same calibration as in

Figure 1. The top plot shows convergence of the series for K(x) for different

values of x according to the approximate conditions expressed previously, the

series should converge as long as |x× ϵ| < 1/a0,1, that is less than 238 approxi-

mately. In fact, the series seems to converge for much larger values also, and it

starts diverging when |x× ϵ| is about 1200. These numbers are huge, as in this

calibration the state variable would practically never take values larger than 10,

which would mean that consumption volatility is ten times larger compared to

the steady state. The bottom plot shows the convergence of the series for the

derivative of K(x) for different values of x, and it is clear that the convergence

of the derivative follows the same pattern. This is reasonable given that in this

case convergence is regulated by the terms that have a high power in terms of

x, and these terms appear in both K and its derivative.

Figure 3 shows convergence for different values of ϵ using the same calibration.11

According to the approximate conditions, the series should converge, if the

absolute value of ϵ is less than 0.8. Indeed, as can be seen in the figure the

series begins to diverge both for ϵ = 0.8 and for ϵ = −0.8. The figure also shows

the corresponding values of ψ for each value of ϵ, and in this example the figurer

indicates that the zeroth order approximation used by Tsai and Wachter (2018)

can indeed be used for a significant range of ψ values. However, using higher

orders of approximation leads to a much larger range of ψ values becoming

usable. The second and third plots of Figure 3 show respectively that the first

and second derivative of K converge for all the values of ϵ, that I have chosen,

including the values of ϵ for which K itself diverged. This can be explained,

because the convergence of the series depends on the terms containing the lowest

11Apart from γ which is now equal to 2.
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powers of x, as terms with higher powers of x will almost certainly be smaller.

Hence, the derivatives are much more likely to converge compared to the original

function. This means that for some quantities that only rely on the derivatives,

the approximation may be used even when K itself diverges.

4 Pricing

4.1 Process of the stochastic discount factor

As has been shown already the method can provide reliable approximations for

a large range of ψ values. The next step is to use the approximation to perform

the pricing of securities. This requires the derivation of the process of the SDF.

In particular, given the expression for the value function, Ito’s Lemma can be

implemented to get to the stochastic differential equation that governs the SDF.

The calculation here follows Chen et al. (2009). In particular, the fundamental

relationship is:
dΛ

Λ
= fV (C, V )dt+

dfC(C, V )

fC(C, V )
(21)

This can be computed relatively easily. The first term is just the derivative of

the flow utility with respect to the value function. The second term can be

computed with an application of Ito’s lemma on the derivative of flow utility

with respect to consumption.12 The result is the following:

dΛ

Λ
=

(ρ(−(1− γψ)e−
(ψ−1)K[xt]

ψ − γψ + ψ
)

1− ψ
− γµct +

γ2σ2
ct

2
+
γ(γψ − 1)ρcxσxtσctK

′ (xt)

ψ

+
(γψ − 1)

(
2ψ(µx0 − xt) log(ϕ)K

′ (xt) + σ2
xt ((γψ − 1)K ′ (xt)

2 − ψK ′′ (xt))
)

2ψ2

)
dt

+
(1− γψ)σxtK

′(xt)

ψ
dZxt − γσctdZct

(22)

where ρcx is the correlation between consumption and the state variable. The

time-separable case arises when γ = 1/ψ. As can be seen by the expression

12It is possible to do this operation after substituting the value function using Equation
(7) and applying Ito’s lemma based on consumption and the state variable as independent
variables.
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above the dependence of the SDF on K(x) and on x disappears in this case. The

stochastic component that is related to consumption (−γσctdZct) is the same as

in the time-separable case. On the contrary, the stochastic component that is

related to the state variable ((1− γψ)σxtK
′(xt)/ψdZxt) does not appear in the

time-separable case. So, given that these stochastic components are ultimately

responsible for the generation of risk premia, recursive utility introduces an

extra mechanism by which premia can be generated. The sign of this mechanism

depends on the sign of (1 − γψ), which corresponds to a preference for late or

early resolution of uncertainty.

Furthermore, based on the SDF expression the risk-free rate can also be

deduced:

r(x) =− E
dΛ

Λ

1

dt
=

γµct −
γ2σ2

ct

2
+
ρ
(
(1− γψ)e−

(ψ−1)K[xt]
ψ + γψ − ψ

)
1− ψ

+
γ(1− γψ)ρcxσxtσctK

′ (xt)

ψ

+
(1− γψ)

(
2ψ(µx0 − xt) log(ϕ)K

′ (xt) + σ2
xt ((1− γψ)K ′ (xt)

2 − ψK ′′ (xt))
)

2ψ2

(23)

The short rate is also affected by recursive utility. While the consumption

smoothing motive (γµct) and the precautionary savings motive (−γ2σ2
ct

2
) is the

same as in the time-separable case, the time preference parameter is multiplied

by a new factor, and the remaining terms are all new.

4.2 Long-term bonds

The process for the SDF can be inserted in the pricing differential equation as

in Cochrane (2009) and Chen et al. (2009):

E
[
d(ΛQ)

]
= 0 ⇒ E

[
dΛ

Λ
+
dQ

Q
+
dΛdQ

ΛQ
= 0

]
= 0 (24)
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Here Q(m,x) is the price of the zero-coupon bond with maturity m when the

state of the economy is x.13 By Ito’s Lemma:

dQ(x,m) =
(
− log(ϕ)(µx0 − x)Qx −Qm +

1

2
σ2
xQxx

)
dt+ σxtQxdZxt (25)

This can be directly plugged in Equation 24 and the result is:

0 =−Qm + r(x)Q+ (− log(ϕ)(µx0 − x) + A(x))Qx +
1

2
Qxxσ

2
xt

A(x) = (γ + ϵ− 1)σ2
xtK

(1,0)(x, ϵ) + γρcxσctσxt

(26)

The subscripts ·m and ·x denote partial derivatives with respect to maturity, m,

and with respect to the state variable, x, respectively. In the above equation

K(x) appears in r(x), but the coefficients of Qx and Qxx only contain K(1,0)(x).

This is noteworthy because Equations (25) and (23)imply that the expected

instantaneous excess return obeys the following relationship:

E

[
dQ

Q

]
−r(xt)dt = −E

[
dΛdQ

ΛQ

]
= A(x)dt =

(
(γ+ϵ−1)σ2

xtK
(1,0)(x, ϵ)+γρcxσctσxt

)
dt

(27)

So, the term premium also primarily depends on K ′(x) and not K(x) itself.

This implies that my approximation may be able to provide useful information

about term premia even when it diverges, given the result in Section 3.3 that

the derivative of K can converge even when K diverges.14

Continuing with the pricing of the long-term bond, according to the Feynman-

Kac method Equation (37) can be solved by Monte Carlo simulations. In par-

ticular:

Q(m,xt) = E

[
exp

{∫ 0

m

r(x̃t+s)ds

}]
= E

[
exp

{
−
∫ m

0

r(x̃t+s)dt

}]
(28)

13In the formulas I use Q instead of Q(m,x) to avoid cluttering.
14For brave researchers this could suggest the use of this approximation even when the

original series diverges, when the item of interest is the risk premium, which is determined by
the derivative of K(x).
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where x̃0 = x and x̃t follows the modified process:

dx̃ =
(
− log(ϕ)(µx0 − x̃) + (γ + ϵ− 1)σx(x̃)

2K ′(x̃) + γρcxσc(x̃)σx(x̃)
)
dt+σx(x̃t)dZxt

(29)

This is a modified process because, while it is similar to the regular state variable

of the model, the trend component of the modified process has extra terms

coming from the interaction of the SDF with the stochastic components of the

state variable process.15 Based on function Q and Equation (25), it is also easy

to derive the instantaneous expected return of long-term bonds.

If, instead of using the modified process, the original state variable is used:

H(m,xt) = E

[
exp

{∫ 0

m

r(xt+s)ds

}]
= E

[
exp

{
−
∫ m

0

r(xt+s)dt

}]
(30)

The result is the price of the risk-neutral bond, namely a bond priced by a risk-

neutral investor with the same consumption process and utility function as in

the original model. The difference between the yields of Q and H can be defined

as the term premium for the corresponding maturity:

TP (m,xt) = −
log
(
Q(m,xt)

)
m

−
(
−

log
(
H(m,xt)

)
m

)
(31)

4.3 Price-consumption ratio

The price consumption-ratio is a concept similar to the price-dividend ratio. It is

a ratio, whose numerator is the price of the consumption perpetuity, a security

that continuously pays the consumption flow for an infinite horizon, and its

denominator is the concurrent consumption flow. Wachter (2006) derived the

price consumption ratio in discrete time for the habit model of Campbell and

Cochrane (1999). Here I use the same approach adapted for continuous time. So,

I build up the price-consumption ratio from zero-coupon securities that pay the

value of consumption after m periods. These securities have a price P (m,xt, Ct)

at time t. The value of these securities depends on the current value of the sate

variable and the current value of consumption. In order to avoid the dependence

15In this expression, instead of σct and σxt, I am using σc(x̃) and σx(x̃) in order to make
explicit that these quantities can now be functions of the modified process x̃.
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on consumption, I divide these securities by current consumption. This leads

to a zero-coupon m-year price consumption ratio, q(m,x) = P (m,x,Ct)/Ct.

Then the combination of these zero-coupon securities leads to the full price-

consumption ratio:16

p(xt) =

∫ ∞

0

q(m,xt)dm =

∫ ∞

0

P (m,xt, Ct)

Ct
dm (32)

Furthermore, one can also define price-consumption annuity ratio. The con-

sumption annuity is similar to the consumption perpetuity, but it only pays

coupons for a finite period of time M . For example:

pM(xt) =

∫ M

0

q(m,xt)dm =

∫ M

0

P (m,xt, Ct)

Ct
dm (33)

If M is large, this quantity likely behaves similar to the price-consumption

ratio, but in practice this may be easier to compute as it does not require the

calculation of the integral for an infinite horizon.

Moving on, for simplicity I drop the time subscript in the following ex-

pressions. In order to derive q(m,x), I follow an approach similar to Chen,

Cosimano and Himonas (2010), who use the pricing equation to calculate the

price-consumption ratio directly. Unlike them I first calculate the q’s and I then

build up the price-consumption ratio. This is arguably more complicated as it

involves the solution of a partial differential equation and the computation of an

integral, instead of the solution of an ordinary differential equation only. How-

ever, my approach does not require the specification of initial conditions and

it determines the price-consumption ratio uniquely. Thus, the pricing equation

can be re-written:

E
[
d(ΛP (m,x,C))

]
= 0 ⇒ E

[
dΛ

Λ
+
dP (m,x,C)

P (m,x,C)
+
dΛdP (m,x,C)

ΛP (m,x,C)

]
= 0

⇒ E

[
dΛ

Λ
+
d
(
q(m,x)C)

)
q(m,x)C

+
dΛd

(
q(m,x)C)

)
Λq(m,x)C

]
= 0

⇒ E

[
dΛ

Λ
+
dq

q
+
dC

C
+
dΛdq

Λq
+
dΛdC

ΛC
+
dqdC

qC

]
= 0

(34)

16This assumes that the integral is finite.

20



In the final line I do not show the dependence of p for simplicity. Similar to

above, by Ito’s Lemma:

dq =
(
− log(ϕ)(µx0 − x)qx − qm +

1

2
σ2
xqxx

)
dt+ σxtqxdZxt (35)

So the processes for the SDF, for the zero-coupon consumption security and for

consumption can all be substituted in the equation above and this will again

generate a partial differential equation that can be solved, by computing the

Feynman-Kac formula through Monte Carlo simulations. The pricing equation

is:

0 =−r(x)︸ ︷︷ ︸
dΛ/Λ

+
(
− log(ϕ)(µx0 − x)

qx
q
− qm

q
+

1

2

qxx
q
σ2
xt

)
︸ ︷︷ ︸

dq/q

+ µct︸︷︷︸
dC/C

+
(1− γψ)ρcxσxtσctK

′(xt)

ψ
− γσ2

ct︸ ︷︷ ︸
dΛdCt/(ΛCt)

+B(x)
qx
q

B(x) =
(1− γψ)σ2

xtK
′(xt)

ψ
− γρcxσxtσct︸ ︷︷ ︸

dΛdq/(Λq)

+ ρcxσxtσct︸ ︷︷ ︸
dqdCt/(qCt)

(36)

The brackets show where the expressions in the equations come from. The

equation can be rewritten as:

0 =−
(
r(x)− µct −

(1− γψ)ρcxσxtσctK
′(xt)

ψ
+ γσ2

ct

)
q − qm +

σ2
xt

2
qxx

+
(
− log(ϕ)(µx0 − x) +

(1− γψ)σ2
xtK

′(xt)

ψ
− γρcxσxtσct + ρcxσxtσct

)
qx

(37)

The corresponding Feynman-Kac formula is:

q(m,xt) = E

[
exp

{∫ 0

m

r̄(x̄t+s)ds

}]
= E

[
exp

{
−
∫ m

0

r̄(x̄t+s)dt

}]
(38)

where

r̄(x̄) = r(x̄)− µc(x̄)−
(1− γψ)ρcxσx(x̄)σc(x̄)K

′(x̄)

ψ
+ γσc(x̄)

2 (39)
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x̄0 = x0 and x̄ follows another modified process:17

dx̄ =

(
− log(ϕ)(µx0 − x̄) +

(1− γψ)σx(x̄)
2K ′(xt)

ψ
+ (1− γ)ρcxσx(x̄)σc(x̄)

)
dt+σx(x̄t)dZxt

(40)

Given the price-consumption ratio as a function of the state variable and the

given stochastic process of the price-consumption ratio that can be written as

follows:

dp =
(
− log(ϕ)(µx0 − x)px +

1

2
σ2
xpxx

)
dt+ σxtpxdZxt (41)

The return of the consumption perpetuity can be derived:18

dP

P
+
C

P
dt =

d(Cp)

Cp
+

1

p
=
dC

C
+
dp

p
+
dCdp

Cp
+

1

p
dt

=µctdt+ σctdZct − log(ϕ)(µx0 − x)
px
p
dt+

σ2
xt

2

pxx
p
dt

(42)

+ σxt
px
p
dZxt + ρcxσctσxt

px
p
dt+

1

p
dt

=
(
µct − log(ϕ)(µx0 − x)

px
p

+
σ2
xt

2

pxx
p

+ ρcxσctσxt
px
p

+
1

p

)
dt+ σctdZct + σxt

px
p
dZxt

Finally the expected return is:

E

[
dP

P

]
+
C

P
dt =

(
µct− log(ϕ)(µx0−x)

px
p
+
σ2
xt

2

pxx
p

+ρcxσctσxt
px
p
+

1

p

)
dt (43)

5 Applications

5.1 Time-varying consumption drift

Given the setup introduced in the previous section, real interest rates and the

price consumption ratio can be determined. Here, I show the results for the case

when consumption drift is time-varying. This is the result of setting µc1 = 1,

17Similar to above, in this expression, instead of σct and σxt, I am using σc(x̄) and σx(x̄)
in order to make explicit that these quantities can now be functions of the modified process
x̄.

18This calculation only applies for the consumption perpetuity. For the case of the con-
sumption annuity the calculation would require an extra component that accounts for the fact
that the annuity at time t has infinitesimally lower duration compared to the annuity at time
t + dt. Numerically, I only calculate annuities. So, I only apply this formula for long-lived
annuities, for which the security’s price should not change significantly with duration.
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which means that the consumption drift is proportional to the state variable.

In this variation consumption volatility is constant, because σc1 = 0, and the

process is homoskedastic, because σx1 = 0. Figure 4 shows the results, while

comparing the eighth order approximation, using the method introduced in this

paper, to the zeroth order approximation, that is equivalent to the method of

Tsai and Wachter (2018). In addition, here ϵ = 0.1 (ψ = 1.11) which is close

to the analytic solution for ϵ = 0 (ψ = 1). The results verify that the basic

approximation can be accurate for ψ ̸= 1. The fist row shows the instantaneous

rate and the ten-year yield as a function of the state of the economy, which is

reflected by consumption drift. The results for the two approximations are very

similar. The second row shows the inverse price consumption ratio as a function

of the consumption drift. The inverse price consumption ratio is equivalent to

the dividend yield of the security. As I have already mentioned, I calculate

the price consumption ratio numerically by integrating the zero coupon price

consumption ratios. However, I cannot numerically integrate to infinity. So,

I put the cutoff at 200 years. This means that technically I am calculating

price consumption ratio for the 200 year consumption annuity. The second

plot of the second row shows the value of the inverse price consumption ratio

for different cutoff points and it can be seen that at 200 hundred years it is

relatively close to being converged. Similar to above, the price consumption

ratio for the two approximations is quite close, even though in this case the

price consumption ratio is not very sensitive to the value of consumption drift.

So, the difference appears larger in the figure. Finally in the third row, I also

show the instantaneous expected return of the consumption perpetuity, which

is very similar to the instantaneous short-term rate in this variation.

In Figure 5, I show the results for ϵ = 0.7, which is not so close to the

analytic solution of ϵ = 0, and as can be seen in Figure 9, the value function

varies significantly for different orders of approximation. This example illus-

trates the value of my method, as it shows that for some interesting values for

the intertemporal elasticity of substitution (ψ = 3.3 in this case, but in other

examples it can also be lower), the value function deviates significantly between

the different orders of approximation. And this has consequences for the im-

plied value of the short-term rate, the yield and the price consumption ratio.
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The short-term rate and the ten-year yield appear linear as functions of the

consumption drift for both approximations, but the slope is different and at the

steady state there is a difference of roughly 1% for the short-term rate and a bit

lower for the ten-year yield. The difference between the two approximations is

also higher for the price consumption ratio, which is now also more sensitive to

the consumption drift.
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Figure 4: Variation: Time-varying consumption drift – ϵ = 0.1
The first row shows the .
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Figure 5: Variation: Time-varying consumption drift – ϵ = 0.1
The first row shows the .

5.2 Time-varying consumption volatility

As a second application, I introduce the case when consumption volatility is

time-varying. This is the result of setting
√
σc1 ̸== 0, while consumption drift

is constant because µx1 = 0. The state variable is also heteroskedastic, and it

is guaranteed to be positive, because σx0 = 0 and
√
σx1 ̸= 0. Figure 6 shows

the case where ϵ = 0.1, and all rates are not very sensitive to consumption

volatility. Nevertheless, the figure demonstrates that the zeroth order approxi-

mation is roughly within 15 basis points compared to the higher approximation.

Depending on the application, this difference could be considered negligible. In

addition, while there is a difference in the level of the rates, the difference in

the slope of the rates with respect to consumption volatility is not noticeable.
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Figure 6: Variation: Time-varying consumption drift – ϵ = 0.1
The first row shows the .

Figure 7 shows the case where ϵ = 0.7. Now, the difference in the rates is

certainly not negligible, as it ranges around 100 basis points. Nevertheless the

slopes still appear the same. This is the result of the derivatives of K being

very well approximated by the zeroth order approximation (Figure 9).

27



Figure 7: Variation: Time-varying consumption drift – ϵ = 0.7
The first row shows the.
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6 Conclusion

In conclusion, I have introduced a new method, based on perturbation theory,

to express the value function when the agent exhibits recursive utility. The

value function is expressed as a series in terms of ϵ and it constitutes a global

perturbation solution. The value of ϵ is determined by the value of ψ, which

represents the IES in the problem. The first term in the series (which multiplies

ϵ0) gives the solution for ψ = 1. Each further order of approximation only

requires the solution of linear equations. Computing the first fifteen orders of

approximation is relatively easy, but higher orders are typically computationally

demanding as the number of coefficients increases by one for each order of

approximation and the equations become increasingly complicated.

The method is useful for a wide range of calibrations. Tsai and Wachter (2018)

only use the zeroth order approximation. I have shown that this can produce

accurate results for a relatively low absolute value of ϵ, but the approximation

can deteriorate as the absolute value of ϵ increases. Higher order approximations

using my method can solve this issue, and this applies both for models with

time-varying consumption drift and time-varying consumption volatility. The

paper can also be extended to include multiple state variables and Poisson jump

components in the consumption process. I have used the perturbation series to

derive both the price of long-term bonds and the price consumption ratio of zero

coupon consumption securities, consumption annuities and the consumption

perpetuity. Furthermore, I have also derived the expected instantaneous return

of the consumption perpetuity. Apart from being easy to implement, my method

allows to easily check whether the results are accurate and how many orders

of approximation are necessary for an acceptable solution. Despite not having

derived exact convergence conditions, I have sketched the behaviour of the series

for different orders of approximation, and I hope to derive more exact results in

future versions of this paper.

For future research, it would be important to derive results that would guarantee

the existence of a solution to this problem, as also discussed in Tsai and Wachter

(2018), but such a task may not be easy. In addition, concentrating on my

method, the perturbation series uniquely determines the value function, even

if it is a divergent asymptotic series for some combinations of parameters and
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values of x. This means that further work following this approach, using more

sophisticated mathematical analysis, could provide an expression of the solution

that is easily computable and uniformly convergent, possibly in terms of special

mathematic functions.19

19Applying a Padé approximation to the problem did not yield converging results in the
regions that were diverging under the regular approximation.
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Figure 2: Variation: Time-varying consumption volatility.
This shows the convergence of the problem for different values of x.
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Figure 3: Variation: Time-varying consumption volatility.
This shows the convergence of the problem for different values of ϵ. The plots
correspond to the series of K and its two derivatives.
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A Appendix

A.1 Proof of result in Equation (8)

The expression is derived from the Hamilton-Jacobi-Bellman equation, DV +

f(C, V ) = 0, after the relevant quantities have been substituted. By applying

Ito’s Lemma to V , which is a function of C and x, the result is:

DV
V

= −1

2
(γ−1)

(
−γσ2

ct + 2µct + σ2
xtK

′′(x)− γσ2
xtK

′(x)2 + 2µxtK
′(x) + σ2

xtK
′(x)2

)
(44)

Here, I can substitute the guessed expression for the value function, V =
C1−γe(1−γ)K(x)

1−γ , which I will verify later, in the previous expression and in the

expression for flow utility:

DV
V

= (1− γ)

(
µct + µxtK

′(x)− γσ2
ct

2
+

(1− γ)σ2
xt

2
K ′(x)2 +

σ2
xt

2
K ′′(x)

)

f(C, V ) =

(1− γ)ρV

((
C((1− γ)V )−

1
1−γ

)1− 1
ψ − 1

)
1− 1

ψ

= (1− γ)ρ
ψ
(
1− e(

1
ψ
−1)K[x]

)
1− ψ

(45)

After plugging these two expressions in the JHB equation, the result is:

ρ
ψ
(
1− e(

1
ψ
−1)K[x]

)
1− ψ

+µct+µxtK
′(x)− γσ2

ct

2
+
(1− γ)σ2

xt

2
K ′(x)2+

σ2
xt

2
K ′′(x) = 0

(46)

This is Equation (8) in the main text. By the fact that this is the result of the

HJB equation, assuming that the solution exists, the guess is verified.

A.2 Derivation of the SDF with time-recursive utility

As mentioned in the paper the stochastic differential equation of the SDF can

be derived based on the following expression:

dΛ

Λ
= fV (C, V )dt+

dfC(C, V )

fC(C, V )
(47)
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So, flow utility is a central component of the derivation:

f(C, V ) =
β

1− 1/ψ

(
(1− γ)V

)((
C((1− γ)V )−

1
1−γ

)1−1/ψ

− 1

)
(48)

The partial derivative of f with respect to V is:

fV (C, V ) =

ρ

(
(γ − 1)ψ + (1− γψ)

(
C(V − γV )

1
γ−1

)ψ−1
ψ

)
ψ − 1

(49)

The partial derivative of f with respect to C is:

fC(C, V ) = −
(γ − 1)ρV

(
C(V − γV )

1
γ−1

)ψ−1
ψ

C
(50)

As I implement Ito’s Lemma directly using ct and xt as independent variables,

I make the following replacements in the expressions above:

ct = log(C), V =
C1−γ

1− γ
e(1−γ)K(xt) ⇒ K(xt) =

log
(
− C1−γ

(γ−1)V

)
γ − 1

(51)

So, they become after simplification:

fV (C, V ) → g(ct, xt) =
ρ
(
−(1− γψ)e−

(ψ−1)K[xt]
ψ − γψ + ψ

)
1− ψ

fC(C, V ) → h(ct, xt) =ρe
( 1
ψ
−γ)K(xt)−ctγ

(52)
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And I implement Ito’s Lemma on g2. The partial derivatives are:

∂h(ct, xt)

∂ct
=γρ

(
−e(

1
ψ
−γ)K[xt]−γct

)
= −γh(ct, xt)

∂h(ct, xt)

∂xt
=ρ

(
1

ψ
− γ

)
K ′ (xt) e

( 1
ψ
−γ)K[xt]−γct =

(
1

ψ
− γ

)
K ′ (xt)h (ct, xt)

∂2h(ct, xt)

∂c2t
=γ2ρe(

1
ψ
−γ)K[xt]−γct = γ2h (ct, xt)

∂h(ct, xt)

∂x2t
=
ρ(γψ − 1) ((γψ − 1)K ′ (xt)

2 − ψK ′′ (xt)) e
( 1
ψ
−γ)K[xt]−γct

ψ2

=
(γψ − 1) ((γψ − 1)K ′ (xt)

2 − ψK ′′ (xt))

ψ2
h (ct, xt)

∂h(ct, xt)

∂ct∂xt
=
γρ(γψ − 1)K ′ (xt) e

( 1
ψ
−γ)K[xt]−γct

ψ
=
γ(γψ − 1)K ′ (xt)h (ct, xt)

ψ

(53)

The expressions above should be plugged into the expression:

dfC
fC

=

(
∂h(ct, xt)

∂ct
µct +

∂h(ct, xt)

∂xt

(
− log(ϕ)

)
(µx0 − xt)

+
σ2
ct

2

∂2h(ct, xt)

∂c2t
+
σ2
xt

2

∂2h(ct, xt)

∂x2t
+
ρcxσctσxt

2

∂2h(ct, xt)

∂ct∂xt

)
dt

+
∂h(ct, xt)

∂xt
σxtdZxt +

∂h(ct, xt)

∂ct
σctdZct

(54)

Then everything is plugged into Equation (47) to give the final result:

dΛ

Λ
=

(
γ(γψ − 1)ρcxσxtσctK

′ (xt)

ψ
+
γ2σ2

ct

2
− γµct

+
(γψ − 1)

(
2ψ(µx0 − xt) log(ϕ)K

′ (xt) + σ2
xt ((γψ − 1)K ′ (xt)

2 − ψK ′′ (xt))
)

2ψ2

+
ρ
(
−(1− γψ)e−

(ψ−1)K[xt]
ψ − γψ + ψ

)
1− ψ

)
dt

− (γψ − 1)σxtK
′(xt)

ψ
dZxt − γσctdZct

(55)
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A.3 Convergence – Time-varying consumption drift

In the main paper I show convergence for the case, in which consumption volatil-

ity is time-varying. Here, I show the case when the consumption drift is time-

varying. The convergence properties are similar in this case.

Figure 8: Variation: Time-varying consumption drift.
This shows the convergence of the problem for different values of x.

In this case, the series converges for all values of ϵ between 0 and 1. this

means that the approximation works quite effectively for all values of ψ > 1.



Figure 9: Variation: Time-varying consumption drift.
This shows the convergence of the problem for different values of ϵ. The plots
correspond to the series of K and its two derivatives.
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