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Abstract

In this paper, we introduce a framework with multidimensional skills, in which

we estimate how fast skills accumulate due to on-the-job experience. We model

an individual’s wage as a weighted sum of her productivities in different skills.

We call this skill-specific productivity expertise. Since expertise is not directly

observable, we proxy this variable with skill-specific experience, which depends on

the years of labor market experience across different occupations and the importance

of the corresponding skill in those occupations. We compute skill-specific experience

using the data on occupational skill requirements from O*NET. We then estimate

the wage equation using skill-specific experience to evaluate the speed of expertise

accumulation (learning rate) in different skills. We find that expertise in different

skills grows with skill-specific experience and that different skills exhibit different

learning rates. (JEL E24, J24)
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1 Introduction

Recent research on workers’ productivity concludes that skills have a multidimensional

character, and that summarizing skill measures by a single number leads to loss of infor-

mation. This fact forces us to include various skill categories in our analyses of the labor

market. At the same time, it opens up a lot of questions. How many and which skills

are relevant? What is the return to different skills? What dynamics do different skills

follow? Which skills matter for different occupations? What is the relationship between

skills and formal education? How do people differ with respect to skills?

In this paper, we introduce a framework with multidimensional skills, in which we

are able to estimate how fast skills accumulate due to on-the-job experience. Our analysis

is based on the skill-weights approach developed by Lazear (2009): all skills are general,

but the uses of these skills are occupation-specific. Following Lazear (2009), we assume

that an individual’s wage is equal to a weighted sum of her productivities in different skills.

We call this skill-specific productivity expertise. Since expertise is not directly observable,

we proxy this variable with an empirical measure that we call skill-specific experience.

Skill-specific experience depends on the years of labor market experience across different

occupations and the importance of the corresponding skill in those occupations. First,

we use the data on occupational skill requirements from O*NET Program database and

the data on occupation histories of young individuals from the National Longitudinal

Survey of Youth 1997 (NLSY97) to compute skill-specific experience. We then estimate

the wage equation using skill-specific experience as an empirical counterpart of unobserved

expertise to evaluate the speed of expertise accumulation (learning rate) in different skills.

Our work is related to a vast and fast-growing literature on human capital accu-

mulation. Starting with a seminal paper by Becker (1962), the human capital research has

shifted focus from firm- and industry-specific human capital to occupation- and task- (or

skill-) specific human capital (for an overview of the history of thought in human capital

research see Sanders and Taber (2012)). We contribute to the last strand of this literature,

which concentrates on skill-specific human capital, specifically, on the returns to multidi-

mensional skills (Ingram and Neumann (2006), Poletaev and Robinson (2008)), and the

process of multidimensional skill accumulation (Yamaguchi (2012), Sanders (2016)).

Our approach is most similar to Gathmann and Schönberg (2010), Lise and

Postel-Vinay (2020) and Guvenen, Kuruscu, Tanaka and Wiczer (2020). Similarly to us,
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Gathmann and Schönberg (2010) model expertise in different tasks (which they call “task

productivity”) as a weighted sum of task tenure.1 Task tenure is the closest concept to our

skill-specific experience. The authors use the task data from the German Qualification

and Career Survey combined with the German Employee Panel, and find that task tenure

is an important predictor of wage growth.

Lise and Postel-Vinay (2020) use data on occupational skill requirements from

O*NET and data on occupation histories from NLSY79. They estimate a structural

search-theoretic model of workers’ careers using indirect inference. They find that exper-

tise in different skills exhibits different characteristics. In addition, they find that skill

mismatch is costly and that the costs vary depending on the skill. Finally, they model

mismatch as the nonnegative difference between the occupational skill requirement and

the corresponding expertise. In their setting mismatch fades the more a person stays at

a specific occupation, because with time expertise adjusts to the occupation the worker

is exercising.

Guvenen et al. (2020) use the same data as Lise and Postel-Vinay (2020). In

their setup, individuals choose an occupation in which skill requirements are equal to their

own perceived skill-specific abilities. The authors estimate a series of regressions, and the

regressors that they use are a weighted average of skill-specific variables. This means

that the regressors themselves, and hence their estimates, are not skill-specific. Like Lise

and Postel-Vinay (2020) they also focus on the concept of skill mismatch. In their case,

skill mismatch is defined as the absolute value of the difference between individual skill-

specific learning rates and the corresponding occupational skill requirements. Unlike Lise

and Postel-Vinay (2020), the skill mismatch stays constant as long as a worker stays in

the same occupation. Guvenen et al. (2020) also find that mismatch is predictive of wages

and the effect lasts for subsequent occupations.

In this paper, we use O*NET as our source of data for occupational skill require-

ments and NLSY97, which is a newer sample compared to NLSY79, for data on occupation

histories. Like the other authors, we also propose a learning process for multidimensional

skills. Unlike the other authors, our process is not based on skill mismatch but rather

on skill-specific experience, which corresponds to time spent practicing a skill on the job.

The closest NLSY-based measure to our skill-specific experience is what Guvenen et al.

(2020) call cumulative past mismatch. However, unlike skill mismatch, skill-specific expe-

1When comparing to other authors we use terminology according to the definitions that we give in
this paper.
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rience depends only on the occupation history of the worker and not on the discrepancy

between her own ability on the one side and occupational skill requirements on the other

side. This means that using skill-specific experience allows us to not rely on test scores,

as we can use skill-specific experience directly as a proxy of expertise. These differences

lead to a relatively different interpretation of our estimates, as we are able to estimate

parameters corresponding to skill-specific learning rates. Like the previous authors we

also find significant results even after controlling for covariates, and we find heterogeneity

between the learning rates of different skills.

O*NET database of occupational skill requirements contains more than a hun-

dred different skill categories. Our paper contributes to the literature that uses factor-

ization methods on O*NET data to derive basic skills out of a large space of occupation-

related characteristics (see, for instance, Ingram and Neumann (2006), Yamaguchi (2012),

Poletaev and Robinson (2008), Lise and Postel-Vinay (2020), Guvenen et al. (2020)). We

use Nonnegative Matrix Factorization, a method novel to this literature, to reduce the

O*NET data to four basic skills, and interpret them as social, physical, technical, and

cognitive skills based on the correlation analysis.

The rest of this paper is organized as follows. Section 2 describes the model

and introduces the concepts of expertise and skill-specific experience. It also outlines

the estimation strategy and analyzes the sources of potential biases. We describe the

data used in the estimation in Section 3. Section 4 explains our dimensionality reduction

procedure. Section 5 presents the main results, while Section 6 shows the results of the

heterogeneity analysis. The robustness checks and additional results are described in

Section 7. Finally, Section 8 concludes.

2 Theoretical foundations

Our model is based on a skill-weights approach to firm-specific human capital, suggested

by Lazear (2009). The author complemented the seminal paper on human capital by

Becker (1962) by suggesting a way to explicitly model specific human capital. According

to him, there are no firm-specific skills. All skills are general; all firms are choosing skills

from a common pool, but attach different weights to the selected skills. In other words,

weights are firm-specific, not skills.
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By Lazear’s theory of firm-specific capital, for instance, cognitive skills (A) and

social skills (B) are general. However, a bank and a retail store may assign different

weights to each of these skills in the applicant’s portfolio. Lazear (2009) summarizes his

approach with a following expression for the output of firm i:

Yi = λiA+ (1− λi)B (1)

where λi is a weight of skill A in the output of firm i. The worker’s wage is then determined

by Nash bargaining as a share of total output Yi.

In this paper, we apply the skill-weights idea of Lazear to a setting where

skill weights λ are occupation-specific, not firm-specific.2 We then model log wage as

a weighted sum of an individual’s expertise in all skills:

wio =
S∑

s=1

λsoeis (2)

The wage of individual i in her current occupation o is equal to a weighted sum, where

eis represents the expertise of individual i in skill s, and λso represents the weight of

skill s in occupation o. As a quantity, expertise captures the level of productivity in the

respective skill. Skill weight λso corresponds to the importance of skill s for occupation

o.3 The more a skill is required by some specific occupation, the more important the

corresponding expertise becomes to determine total productivity. For example, both an

engineer and a high-school teacher might need mathematics, but the extent to which this

skill is required can be different across the two occupations. Following Guvenen et al.

(2020), we assume that there is perfect competition among occupations, such that an

individual’s output perfectly equals her remuneration.

2Kambourov and Manovskii (2009) show that occupation-specific human capital is much more im-
portant in determining wages than firm- or industry-specific human capital. The authors conclude that
human capital is occupation-specific.

3In contrast to Lazear (2009), in our model occupation-specific weights λ do not sum up to 1. Section
4 elaborates on this point.
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2.1 Estimating the wage equation

If expertise eis were observable, we could use skill weights λso to estimate a regression

based on equation 2.4 In particular, we could run the following regression:

wio = a1λ1,oei,1 + a2λ2,oei,2 + . . .+ aSλS,oei,S + uio (3)

where λs,oei,s for s = 1, . . . , S are the regressors and uio is some process with zero mean.

To the extent that (a) wages are exclusively driven by occupation-specific productivity and

(b) the measures for the weights λso are also perfect, the estimates of all the parameters

as should be equal to 1 and the regression should exhibit a perfect fit.5 Crucially, if

the weights are positively correlated with expertise, this in itself does not lead to biased

estimates. Furthermore, even if the weights are imperfectly measured such that only

λ̃so = λso+uλ,so is observed, one can show that the estimates of as will be biased towards

0. This implies that the regression will produce an estimate of the lower bound of the

effect. Due to symmetry, the same argument can be used when the weights are well-

measured but there is measurement error in the data on expertise. Hence, as long as one

has a proxy of expertise for each different skill, they can produce an estimate of the lower

bound of the true effect.6

Guvenen et al. (2020) use a similar argument to justify the use of test scores as

measures of true skill-specific ability, which is not directly observable. Instead, we will

use a new variable to proxy for expertise – skill-specific experience.

Skill-specific experience as a proxy of expertise

Skill-specific experience is the cumulative amount of time spent developing a skill during

a work career. In general, labor market experience is an important driver of skill accumu-

lation, simply because people spend most of their adult life working. We use skill-specific

experience as a proxy for unobserved expertise, as we think that workers improve their

expertise in skills on the job through learning-by-doing while performing their everyday

4In this paper we use data from O*NET to construct the skill weights, as will be explained later.
5If the weights are measured in different scales, then the estimates of the regression will naturally be

scaled according to the corresponding scale factors.
6Here we assume that the regressors λs,oei,s are not correlated with each other. Otherwise the mea-

surement error of one regressor can contaminate the estimates of the others.
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tasks.7 Clearly, some occupations develop specific skills more than others, so it is rea-

sonable to distinguish between different kinds of skill-specific experience. Intuitively, a

person that has exercised an occupation with high requirements for cognitive skills will

have a high experience specific to cognitive skills. At the same time, she may have very

little experience specific to technical skills, if her cognitive-intensive occupation did not

involve a lot of technical tasks. We denote skill-specific experience with ỹis and we use

the following definition:

ỹis =
O∑

o=1

λsoyio (4)

where the summation index runs through O possible occupations, and yio is the amount

of time that individual i spent exercising occupation o throughout her career. As is clear

from equation (4), we center skill-specific experience around the occupations in a worker’s

career and not around specific jobs. Furthermore, the skill weights λ in equation (4) are

the same skill weights that we use in equation (2). Thus, we assume that the skill weights

λ indicate how important a skill is for the productivity of the worker in occupation o,

and at the same time determine the amount of skill-specific experience that the worker is

gaining while exercising that occupation. We believe that this assumption is reasonable

and it simplifies our analysis.

While both Guvenen et al. (2020) and Lise and Postel-Vinay (2020) use test

scores to proxy for individual expertise in different skills, we follow an alternative route

by using skill-specific experience itself. We describe the relationship between expertise

and skill-specific experience as follows:

eis = αs + βsỹis + ϵis (5)

The error term ϵis has zero mean for each individual i and skill s, and αs and βs are the

parameters of the linear relationship for each skill s.8 Combining equations (2) and (5),

7According to Cossa, Heckman and Lochner (1999), there are two main specifications of skill formation
process in the literature. The first specification (Ben-Porath (1967), Kuruscu (2006), Flinn, Gemici and
Laufer (2017), Engbom (2021)) assumes that workers allocate their time between working for pay and
training. Human capital accumulation distracts workers from productive activities, resulting in foregone
earnings. Such a model corresponds to the notion of vocational or on-the-job training. The second
specification (Shaw (1989), Imai and Keane (2004)) is that of learning-by-doing: time devoted to work
produces skills. Human capital accumulation happens simultaneously with productive activities, so there
is no trade-off between working and training. Our model is in line with the second specification. For a
discussion of the differences between the two specifications see Killingsworth (1982) and Blandin (2018).

8Section 7 extends this linear specification to a second order polynomial.
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we arrive at the following regression equation:

wio =
S∑

s=1

λso(αs + βsỹis + ϵis) + uio =
S∑

s=1

αsλso +
S∑

s=1

βsλsoỹis +
S∑

s=1

λsoϵis + uio (6)

Equation (6) is the basis of the regressions that we will execute in this paper. Skill-weights

λso will be extracted from the O*NET data and used to compute skill-specific experience

ỹis. The regression will then produce parameter estimates for αs and βs, which can be

interpreted in two different ways. On the one hand, if skill weights λ are well measured,

statistically significant estimates of αs and βs indicate that skill-specific experience ỹis

is a valid proxy of expertise (especially if statistical significance survives the inclusion of

covariates). On the other hand, the estimated coefficients βs have an interpretation as

average learning rates for skills.9 Expertise accumulates through relevant work experience

but not at the same pace for all skills. In some skills skill-specific experience may help a

lot (high βs), while in others it may advance a worker’s expertise very little (low βs). To

the best of our knowledge, this is the first paper to estimate skill-specific learning rates.

Both interpretations of βs rely on two crucial assumptions. The first one is that

the wage perfectly reflects productivity. The second one is that the weights λ perfectly

reflect the market price of expertise in skills.10 If expertise in cognitive skills becomes less

valuable in the labor market, the decrease in its price should be captured by a decreasing

weight λ for cognitive skills, and not by a negative βcognitive. If this assumption does not

hold and if, for example, the weights λ fail to incorporate the fall in the market price of

cognitive skills, this could push βcognitive to negative territory.

Reliability of regression estimates

Our framework makes very few assumptions about the structure of the labor market,

which makes our analysis more flexible and more general. The drawback, however, is that

we do not take a specific stand on the various processes that are driving the labor market.

For this reason it is important to analyze the possible sources of bias for our regression

estimates.

9Interpreting the α’s is not as straightforward. These parameters correspond to the constant in
equation (5), and they should represent the average level of expertise in absence of skill-specific experience.
Conceptually, αs may be very sensitive to sample selection and the inclusion of other control variables,
e.g. years of education.

10This is arguably problematic, because in practice the O*NET database does not directly record this
quantity, but rather captures demand for skill-specific expertise.
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From equation (5), the bias of the estimates αs and βs for each s can be judged

by whether the following terms are equal to zero or not:

E[λso(λsoϵis + uio)] and E[λsoỹis(λsoϵis + uio)] (7)

Lemma 1: The estimates of αs and βs from a linear regression based on equation (6) are

unbiased if ϵis and uio are independent of ỹis and λso.

According to Lemma 1, the estimates will be unbiased even if there is correlation between

λso and ỹis. This is an important result, because these two variables are bound to be

highly correlated. This is clear from the definition of ỹis, which is the sum of past skill

weights λso.

We now extend the analysis to the case when individuals have different learning

rates. Then, equation (5) takes the following form:

eis = αs + (βs + bis)ỹis + ϵis (8)

and the resulting regression is:

wio =
S∑

s=1

αsλso +
S∑

s=1

βsλsoỹis +
S∑

s=1

bisỹisλso +
S∑

s=1

λsoϵis + uio (9)

Here βs plays the same role as before, but bis is an individual-specific learning rate.

Lemma 2: The estimates of αs and βs from a linear regression based on equation (9) are

unbiased if bis, ϵis and uio are independent of ỹis and λso.

The estimates of αs and βs can still be unbiased even if there are individual learning rates

in the setup. As before, this result also survives when the skill weights are correlated with

skill-specific experience.

Finally, we discuss the situation when the estimates are biased in the following

lemma:

Lemma 3: The estimates of αs and βs from a linear regression based on equation (9) are

biased if ϵis or bis:

1. are positively correlated with λso or

8



2. are positively correlated with ỹis. In this latter case the bias on αs will be negative

and the bias on βs will be positive.11

The following examples provide the intuition behind correlation between bis on

the one hand and λso or ỹis on the other. A person who is a good learner of cognitive skills

may have a higher probability of exercising an occupation that strongly requires cogni-

tive skills (corr(bi,cognitive, λcognitive,o) > 0). As a result, the estimate for βcongitive may be

biased. In practice, the positive correlation between individual-specific learning rate and

occupation selection is known as selection on match quality, and is a fundamental empirical

problem of the human capital literature (Sanders and Taber (2012)). Alternatively, some-

one who is a good learner of cognitive skills may have a higher probability of having worked

in the past at jobs that require high cognitive skills (corr(bi,cognitive, ỹi,cognitive) > 0). In

this case, the estimate for βcognitive will be unambiguously upward biased (while the es-

timate for αcognitive will be unambiguously downward biased). Although the above sce-

narios cannot be ruled out, there are two arguments that support the case for unbiased

estimates. First, a lot of skills could be largely homogeneous among individuals with re-

spect to learning rates, especially given control variables. Second, Lemmas 1 and 2 show

that a correlation between skill weights λ and skill-specific experience ỹ does not lead to

biased estimates. Thus, if occupation choice is mainly driven by occupation history of

the worker, no bias arises. To evaluate the potential bias of our estimates in practice, we

conduct several robustness exercises in Section 7.1.

Empirical specification

Based on equation (6), we estimate a following regression model:

logWiot =
S∑

s=1

αsλsot +
S∑

s=1

βsλsotỹist + δXit + νi + ωt + ηind + θo + ϵiot (10)

The dependent variable logWiot is the log of hourly wage of individual i working in

occupation o in year t. The right-hand side of equation (10) consists of initial level of

expertise αs, weighted skill-specific experience ỹist, a vector of control variables Xit, and

a set of individual, year, industry, and occupation fixed-effects. We use a balanced panel

and apply a fixed-effect estimator with standard errors clustered at the level of individual.

11For the results in the lemmas to hold, we need to assume that the regressors are uncorrelated with
each other. This would be true if the λ’s for the different skills were orthogonal.
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The vector of control variables includes age and square of age, marital status, years of

education, and tenure in current job. αs and βs are 2× S parameters to estimate.

Equation (10) allows us to recover the values of parameters αs and βs and to

quantify the average pace of expertise accumulation. We can then plug these values back

into equation (5) to see how expertise increases with skill-specific experience. Further-

more, the estimated parameter βs in combination with skill weights λsot can be thought

of as the returns to skill-specific experience in occupation o.

3 Data

3.1 O*NET

We do not estimate skill weights λsot. Instead, the skill-weights are extracted from the

occupational dataset O*NET. O*NET measures skills, abilities and knowledge necessary

to perform tasks within narrow occupation categories, as well as required education,

training, interests, values, and experience. The respondents of O*NET questionnaires –

either incumbents of the occupations, or occupational analysts – are asked to rate the

importance of various skill dimensions for performance within occupations. We collect

the analyst ratings from O*NET releases 2002-2017 for the following groups of O*NET

occupation characteristics: Basic Skills, Cross-Functional Skills, Abilities, and Knowledge.

Each of these groups in turn consists of multiple narrow skill categories (see Appendix

Table 8 for a full list).

Given the richness of occupational characteristics available in O*NET, one could

wonder how the four groups of characteristics were selected. While Basic Skills and

Cross-Functional Skills seem a natural choice for skills, it is less clear whether categories

within Abilities and Knowledge can also be interpreted as skills. Upon inspecting the

available categories across all groups of characteristics provided by O*NET, we decided

to include all four groups, as it is often difficult to separate skills from abilities. For

instance, Mathematics is a category that belongs to both Skills and Knowledge groups.

We follow Lise and Postel-Vinay (2020), who also include characteristics from Abilities

and Knowledge into their skill set. Unlike Lise and Postel-Vinay (2020), however, we
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do not look at categories within Work Context and Work Activities, as those seem to

be much more job-specific. The information on the level of skill requirement in O*NET

is collected using the following question: “What level of the skill/ability/knowledge is

needed to perform your current job?” (see Appendix Figure 8). Of course, our choice of

the groups of O*NET occupational characteristics will determine the reduced skills during

the dimensionality-reduction procedure. We will discuss the question of what constitutes

skill at length in Section 4.

Previous literature that deals with multidimensional skills typically uses the

combination of NLSY79 and O*NET data to estimate individuals’ skill endowments and

occupational skill requirements (Guvenen et al. (2020), Lise and Postel-Vinay (2020)).

We diverge from the existing research in that we are using the labor market data from

a later NLSY97 survey. The earliest available O*NET survey was released only in 2002.

Since the importance of various skills in occupations can change over time, the 1997-2011

NLSY survey is better suited for matching with O*NET data.12

3.2 NLSY

To estimate equation (10), we use the 1997 sample of the National Longitudinal Survey

of Youth (NLSY97). NLSY is a well-known panel dataset, which follows the lives and

careers of young people for twenty years. The respondents were aged 12-17 during the

first wave of the survey in 1997. Since NLSY97 samples young adults before they enter

the labor market, it allows us to estimate their skill-specific experience precisely, as we

know all the jobs across all the occupations the respondents ever worked in.

We use the information on the number of jobs per year, total weeks worked

per year and total hours worked per year, as well as tenure, hourly wage and weekly

hours worked in each job. Most importantly, NLSY97 provides information about the

occupation and industry of every job that the respondent held during each year.13 This

12One obvious example of the change in the skill composition of occupations is substitution from
routine to non-routine tasks due to computerization (Autor, Levy and Murnane (2003)). Appendix
Figure 9 uses O*NET data to illustrate how occupational skill requirements changed between 2002 and
2017 for Production Occupations, using skill group Abilities as an example.

13NLSY97 records occupations and industries using 2002 Census classification. For the purpose of
merging NLSY97 with O*NET data, we transformed 2002 Census coding into 2018 SOC classification,
using crosswalks provided by US Census Bureau. There are 4 occupations in 2002 Census that don’t exist
in 2018 SOC. Since we cannot connect these occupations with skill weights λsot, we drop the respondents
who worked in these occupations from our baseline sample.
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allows us to accurately measure experience acquired by the respondent even in cases of

several parallel jobs. Since NLSY97 collected data only biennially from 2011 onward, we

restrict our sample to 1997-2011, which gives us 15 years of observations. We exclude

individuals who reported tenure above 53 weeks in 1997, since we have no information

about their jobs and occupations prior to 1997. We also drop individuals with gaps in

employment history due to non-interview.14 We do not select our sample based on age:

even though some of the respondents are only 12 in 1997, their skill-specific experience

is measured correctly, and we still observe 5-10 years of their labor market experience.15

Nevertheless, it is important to remember that our analysis is based on a young sample

of individuals at the beginning of their career.

The most important variable of our analysis is skill-specific experience ỹist, which

measures the time that a particular skill s was practiced. We construct ỹist based on

NLSY97 data and skill weights λsot from O*NET. First, we compute hours per year

worked in each occupation o for each individual in our baseline sample. We weight these

annual hours in occupation o by skill weights λsot. This transforms occupation-specific

hours into skill-specific hours, resulting in S × O variables measuring hours worked. We

proceed by summing up skill-specific hours across all occupations. For each year and

for each individual, we have now constructed a measure of annual hours spent practicing

skill s. Finally, we sum up annual skill-specific hours across years to get a measure of

skill-specific experience ỹist.

Table 1: Summary statistics

All Women Men

mean sd mean sd mean sd

Age 21.59 4.56 21.63 4.56 21.56 4.56

Male 0.48

Ever married dummy 0.17 0.20 0.13

Years of education 11.65 2.68 11.82 2.76 11.46 2.58

Tenure in current job 1.52 1.82 1.48 1.76 1.57 1.89

Wage, 2015 dollars 14.17 9.30 13.47 8.62 14.94 9.94

Total weeks worked per year 28.24 22.33 28.21 22.23 28.28 22.44

Years in labor market (experience) 5.19 4.09 5.21 4.10 5.18 4.07

Observations 83955 44055 39900

14For a more detailed account of imputations, variable construction and cleaning procedures, see Ap-
pendix A1.

15We conduct robustness checks, in which we exclude those below 14 years of age. Our results remain
unchanged.
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Our baseline sample is balanced: it includes 5,597 young men and women. Table

1 presents the summary statistics for the selected control variables. The baseline sample

is young – the average age in the sample is 21.6 years. Young people are more likely

to switch jobs – the average tenure in the sample is only 1.5 years. Since many of the

respondents are still studying at the beginning of our sample period, both the average

annual number of weeks worked and the average labor market experience are pretty low

at 28.2 weeks and 5.2 years respectively.

The main goal of this paper is to measure the average learning rates for differ-

ent skills. Naturally, the estimates of the learning rates will be driven in part by the

characteristics of our sample. Given the average age and labor market experience of the

respondents in NLSY97, the values of the parameters β can be treated as average learning

rates for the workers at the beginning of their career, and should be generalized to the

entire population with caution. The importance of the sample characteristics will become

clear in the heterogeneity analysis in Section 6.

4 Constructing skill weights

4.1 What is a skill?

Before continuing, it is useful to briefly discuss what we mean by skill in this paper.

The existing literature on skill-based human capital does not provide an unambiguous

definition of skill. A common approach is to introduce a dichotomous skill heterogeneity,

such as cognitive versus non-cognitive (manual, physical, motor) skills (see, for instance,

Yamaguchi (2012)). Other classifications include social or interpersonal skills in addition

to cognitive skills (Lise and Postel-Vinay (2020)). Some authors introduce a slightly finer

heterogeneity within cognitive or physical skills. Guvenen et al. (2020), for instance,

distinguish between math and verbal skills. Poletaev and Robinson (2008) split non-

cognitive skills into fine motor skills and physical strength, while Ingram and Neumann

(2006) separate coordination in addition to fine motor skills and strength. Some non-

standard classifications also exist (e.g. Sanders (2016) divides skills into known and

unknown to the worker, and Sanders and Taber (2012) suggest the Big Five personality
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traits as measures of non-cognitive skills). Psychological literature suggests yet another

skill classification. For instance, according to Cattell (1963), general ability can be divided

into fluid (adaptive) and crystallized (narrow) abilities.

Conceptually, in this paper we take equation (1) in Lazear (2009) seriously in

that a skill is defined as any kind of capacity that workers may have that can contribute

to their productivity. Furthermore, it is implied by the framework that workers sharing

this capacity will see a similar effect on their productivity if they are working in occupa-

tions with similar skill requirements. This definition is quite broad, as it could include

categories as different as finger dexterity, explosive strength, chemistry, and persuasion.16

We decided to maintain the term “skills” for lack of a better term to describe these cat-

egories, even if it seems as too broad in many cases. In practice, the choice of relevant

skill dimensions will arise “endogenously” as an outcome of our dimensionality reduction

procedure.

4.2 Dimensionality reduction methods

To construct a measure of skill-specific experience ỹ and perform our regression analysis,

we need data on skill requirements – skill weights λ – for each occupation. To that end,

we use the 120 skill categories that describe each occupation in the O*NET database,

as was described earlier.17 Clearly, 120 are too many categories for the exercises that

we want to perform. Thus, we construct a reduced space of skill weights. Ideally, the

dimensionality reduction procedure extracts the true underlying skill weights out of noisy

observable O*NET data.

To achieve this, we use Nonnegative Matrix Factorisation (NMF) (Lee and Seung

(1999), Févotte and Idier (2011)). This method factorizes the full matrix of skill categories

that we get from O*NET into two matrices. The key feature of these matrices is that they

have no negative elements. For each of the 120 skill requirements that are recorded in

the O*NET database and for each occupation, this underlying process can be described

as follows:

λ′
s′o = xs′,1λ1,o + xs′,2λ2,o + . . .+ xs′,sλs,o (11)

where λ’s represent the reduced skill requirements, while λ′s represent the skill require-

16All these examples are also particular categories that are available in the O*NET database.
17Specifically, we use levels of skills from O*NET.
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ments recorded in the O*NET database, and the indices s = 1, . . . , S, s′ = 1, . . . , 120 and

o respectively indicate reduced skills, the full list of skill requirements and occupations.

These equations can be written in matrix form:

Λ′
(O×S′)

= ΛS
(O×S)

XS
(S×S′)

(12)

We can now use matrix ΛS as the reduced space of the skill weights, as it has the desirable

dimensions. In particular, each row of this matrix corresponds to an occupation in our

sample, and the number of columns corresponds to the number of dimensions that we

want our reduced space of skill requirements to have. The main benefit of using NMF

for dimensionality reduction is that all the numbers involved are nonnegative. This is a

desirable characteristic, because it is difficult to make sense of negative skill requirements

or negative combinations of skill requirements. NMF guarantees this result, whereas

alternative dimensionality reduction methods such as principal component analysis (PCA)

can produce any combination of positive and negative numbers.

NMF produces the matrix of reduced skill weights which we use for our analysis.18

However, the method by itself does not determine the number of reduced skills. To decide

what is the optimal number of skills, we use diagnostics such as the elbow method and the

silhouette method. In our case, these methods do not provide an unambiguous answer.19

We choose four reduced skills, as we believe that this strikes the right balance between

obtaining as much explanatory power as possible and maintaining statistical power and

interpretability.

To provide informative labels on these reduced skills, we inspect the correlations

between NMF components and the skill categories of the original data. Specifically, for

each reduced skill, represented by a column of matrix ΛS, we compute the correlation

with each of the 120 skill categories in the raw O*NET data.20. Table 2 shows the top

18Following Lise and Postel-Vinay (2020), we linearly transform the data on the reduced skill require-
ments so that they fit in the [0,1] interval. Unlike Lise and Postel-Vinay (2020), we do not require our
skill weights to sum up to one. This may seem puzzling to the reader as this is a common practice when
working with weights. However, in this case, the skill weights do not only reflect the composition of skill
requirements of occupations but also the skill level. This crucial dimension would be lost if we forced the
weights to always add up to one.

19The elbow method (Appendix Figure 10) suggests three reduced skills, but the “elbow” is not that
prominent, while the silhouette method (Appendix Figure 11) seems to suggest that anything between
two and five reduced skills would be reasonable.

20The reduced skills are represented by columns in ΛS , while the skill requirements for each of the 120
categories in the O*NET data are represented by columns in Λ′.
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five highest correlations for each of the reduced skills.

Table 2: Correlations between NMF components (reduced skills) and skill categories from
O*NET

Skill category from O*NET Correlation

Component 1 Speech Recognition .778

Speech Clarity .768

English Language .76

Psychology .729

Sociology and Anthropology .724

Component 2 Multilimb Coordination .928

Static Strength .918

Extent Flexibility .909

Reaction Time .896

Dynamic Strength .892

Component 3 Equipment Selection .89

Technology Design .838

Installation .834

Troubleshooting .78

Equipment Maintenance .714

Component 4 Engineering and Technology .91

Design .847

Physics .81

Mathematics .713

Visualization .599

The correlation analysis allows us to give intuitive and accurate labels to our re-

duced skills. The first NMF component – the first reduced skill – is highly correlated with

such skill categories as speech recognition, speech clarity, English language, psychology,

and sociology. This indicates that the first reduced skill summarizes the social require-

ments of occupations. The second component is clearly connected to physical skills, as

it exhibits close to one correlations with multilimb coordination, strength, flexibility, and

reaction time. The third component summarizes information on technical requirements of

occupations, such as equipment selection and maintenance, installation, and technology

design. Finally, the last NMF component seems to represent creative or cognitive skills, as

it shows high correlation with such skill categories as engineering, design, physics, math-

ematics, and visualization. Based on the correlation analysis, we label the four reduced

skills as social, physical, technical, and cognitive.

In summary, NMF is a good dimensionality reduction method for the case of

skills. It results in a matrix of nonnegative reduced skills, which is sensible since we natu-
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rally think of skills as positive attributes.21 NMF is used extensively in machine learning

applications (for example, in facial recognition), but to our knowledge it has not been

used in economics. The final skills – social, physical, technical, and cognitive – are very

intuitive, and describe the skill composition of the labor market in a reasonably compre-

hensive way. They are also comparable with the skills used in the literature. For example,

Lise and Postel-Vinay (2020) use three categories of skills: manual, social and cognitive,

with manual skills being similar to what we call technical skills. Thus, our dimensional-

ity reduction procedure introduces a somewhat finer heterogeneity in skills, additionally

separating physical skills. Of course, the main benefit of our methodology relative to

the existing works is that we abstract from making any subjective decisions regarding

the choice of skills. The dimensionality reduction methods most commonly used in the

O*NET-based literature involve either manual categorization of O*NET characteristics

into broader skill groups, or a subjective selection of exclusion restrictions. We simply let

the data speak.

Before turning to the estimation of our model, we also check the sensibility of

the skill weights λ obtained as a result of NMF by looking at occupation categories. Table

3 shows skill weights λso in 2011 averaged over broad occupation groups. Indicatively,

social, physical, technical, and cognitive skills are required at the highest level by the

broad occupation categories Community and Social Service, Construction and Extraction,

Computer and Mathematical, and Architecture and Engineering occupations respectively.

This is an extra verification that the reduced skills make sense, as the labels were not

chosen in association with specific occupations.

Table 3: Average estimated λso in 2011 for broad occupation groups.

Occupation Group Social Physical Technical Cognitive

Architecture and Engineering .28618902 .07811863 .23118561 .59912735

Arts, Design, Entertainment, Sports, and Media .47912365 .13588654 .04198404 .12416819

Building and Grounds Cleaning and Maintenance .28735389 .35352162 .06457376 .10297743

Business and Financial Operations .52851543 .02915419 .04442388 .19987429

Community and Social Service .63872004 .1279843 .00581 .01962201

Computer and Mathematical .36002418 .02740391 .29165203 .34281122

Construction and Extraction .19010702 .47489226 .11151757 .21800971

Educational Instruction and Library .5366491 .09986561 .02359346 .13630168

Farming, Fishing, and Forestry .2634566 .39553864 .05917655 .1867835

Food Preparation and Serving Related .33359315 .28807019 .02936215 .04210635

Healthcare Practitioners and Technical .53958425 .24031693 .03752594 .15054376

21Additionally, the matrix of loadings XS , which describes the way the reduced skills must be combined
to recreate the original data, is also nonnegative.
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Healthcare Support .43632113 .28056554 .01671212 .02290295

Installation, Maintenance, and Repair .1502522 .4426992 .25614258 .24795805

Legal .59834442 .00826091 .007146 .06432053

Life, Physical, and Social Science .4361368 .1167108 .10648435 .34711879

Management .54138941 .08102436 .06109446 .25031494

Office and Administrative Support .44784238 .11312516 .03105842 .0687637

Personal Care and Service .42639604 .22663195 .01182458 .03886119

Production .18667029 .40228343 .16080814 .1718724

Protective Service .43972485 .36396973 .01049619 .09991131

Sales and Related .47705116 .0891592 .0341962 .11992848

Transportation and Material Moving .27406271 .43522831 .06348333 .13892121

Total Average .40261399 .21865506 .07728415 .16787268

5 Main results

5.1 Skill-specific experience

Before proceeding to the regression results, we present our empirical proxy for unobserved

expertise in different skills – skill-specific experience. Using the skill weights λsot, we follow

equation (4) to construct experience ỹ in 4 skills: social, physical, technical, and cognitive.

Figure 1 demonstrates the average skill-specific experience by years in the labor

market. Individuals at the beginning of their career accumulate the most experience in

social skills. After 15 years of working, the average experience in social skills exceeds 3

units. Experience in physical skills and technical skills comes as a close second, with ỹ

around 2. The accumulation of skill-specific experience in social skills accelerates at a

later stage of an individual’s career, suggesting that young people switch from physical-

to social-intensive occupations over time. NLSY97 respondents accumulated the least

experience (less than 1) in cognitive skills.

The importance of physical skills at the beginning of workers’ career is not sur-

prising: the first job for many young people is often a low-paid entry-level position, which

requires no special qualifications. Besides, young people are likely to have a physically-

intensive side job while enrolled in college. In fact, the five most common occupations in

our young sample are cashiers, retail salespersons, waiters, laborers and material movers,

and cooks – all of which are characterized by low skill weights λ in all but physical skills.

18



0
1

2
3

4
Sk

ill-
sp

ec
ifi

c 
ex

pe
rie

nc
e

0 3 6 9 12 15
Years in the labor market

Social skill Physical skill
Technical skill Cognitive skill

Figure 1: Average skill-specific experience ỹs by years in the labor market.

As the sample becomes older, individuals switch to occupations which require higher

level of social skills. After the first 6 years in the labor market, the paths of experience

accumulation in physical and social skills diverge.

Figure 2 highlights important heterogeneities in accumulation of skill-specific

experience by gender. The first fact that stands out is that young women specialize in

social skills. After 15 years in the labor market, women gain 4 units of experience in

social skills, compared to only around 3 units gained by men. Moreover, women start

accumulating experience in social skills early on. Men, on the other hand, do not exhibit

high concentration in one skill. Over the first 15 years in the labor market, young men

reach 3 units of experience in physical and social skills (with physical skills dominating

throughout the entire period), and 2 units of experience in technical skills. Men also

accumulate slightly more experience in cognitive skills. Since on average young women

spend as much time in the labor market as young men (both in terms of years of labor

market experience and weeks worked, see Table 1), the difference in experience must

be driven by occupation choice and corresponding weights λ. Women concentrate in

occupations with higher social skill requirements, and lower requirements for physical,

technical, and cognitive skills (see also Appendix Table 9).
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Figure 2: Average skill-specific experience ỹs by years in the labor market for men and
women.

Finally, Figure 3 shows the distribution of skill-specific experience across edu-

cation groups. The patterns of skill-specific experience by college education mimic those

by gender. Perhaps not surprisingly, individuals with no college education achieve higher

level of skill-specific experience in physical skills. This result is in line with Yamaguchi

(2012), who found that less educated individuals work in occupations with higher motor

task requirements. College educated respondents, on the other hand, have significantly

more experience in social skills at any stage of their career. Similarly to women, college

educated workers seem to specialize in social skills. A less anticipated result is that those

without a college education accumulate more experience in technical skills. This result

is mainly driven by the differences in working time between college and non-college re-

spondents. Although workers with and without college education are equally likely to

select technically-intensive occupations (Appendix Table 9), those with a college degree

on average work less hours per week at the beginning of their career, as they probably

have a part-time job alongside studying (Appendix Figure 13). Finally, both education

groups gain a similar level of experience in cognitive skills. As with technical skills, this

result is primarily explained by the differences in working hours, since college-educated
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Figure 3: Average skill-specific experience ỹs by years in the labor market. Left panel shows
average skill-specific experience for people with some college (Associates, Bachelors, Masters
or PhD degree), right panel shows average skill-specific experience for people without college
(GED, high-school diploma or no degree at all).

individuals work in more cognitive-intensive occupations.

Overall, gender heterogeneity is driven by occupational choices, while the differ-

ences in skill-specific experience between education groups follow from both occupational

selection (in physical and social skills) and hours gap (technical and cognitive skills). The

heterogeneity analysis along the education dimension generates another interesting result.

It indicates that a simple skilled vs not skilled dichotomy of workers may be inaccurate.

Both college and non-college graduates are on average skilled. The only difference is the

composition of skills that these groups exhibit. Furthermore, we find that college-educated

workers specialize in social rather than cognitive skills, and have the same experience in

cognitive skills compared to people with less education. This result could have important

implications for explaining college wage premium.

21



5.2 Getting expertise with experience

The main empirical question of our research is how people accumulate expertise in dif-

ferent skills with work experience. To answer this question, we use skill weights λ and

skill-specific experience ỹ to estimate equation (10). As discussed earlier, the estimated

coefficients β can then be interpreted as the speed of expertise accumulation.

The estimation results are presented in Table 4. Column (1) includes only our

measures of skill weights and skill-specific experience.22 The first five estimates (“weight”)

correspond to parameters α, and the remaining five estimates (“weighted experience”)

correspond to parameters β from equation (5). Regressions in columns (2)-(4) additionally

control for age and age squared, marital status, years of education, and tenure, as well as

for broad occupation and industry groups in column (3), and for narrow occupations and

broad industries in column (4).

In the interpretation of the results, we focus on the estimates for the learning

rates β as opposed to the estimates for the parameters α on two grounds. First, the

parameters α are bound to vary significantly depending on the choice of the sample, as

they correspond to the average expertise at the start of workers’ career. Second, they are

very sensitive to the inclusion of control variables like education. For this reason, we think

that the most reliable specification for the estimation of the α’s is found in column (1)

of Table 4. With respect to the β’s, our preferred specification is in column (4), because

it shows that our estimates of the learning rates survive both the inclusion of covariates

and the use of narrow occupation and industry fixed effects.

According to our theoretical model (equation (2)), the wage of an individual is a

weighted sum of her expertise in different skills, with weights λ measuring the importance

of skills in a given occupation. In other words, the returns to expertise in different skills

are captured by the parameters λ, and are not estimated in this regression. In turn, the

estimated parameters α and β describe the relationship between expertise and skill-specific

experience. Positive βs implies that expertise in skill s is increasing with skill-specific

experience. The magnitude of the coefficient βs is interpreted as the learning speed: the

higher the coefficient, the quicker people accumulate expertise with work experience.

The estimation results in column (1) indicate that expertise is indeed increasing

with skill-specific experience: β coefficients of experience in all skills are positive and

22All regressions include individual fixed effects; regressions in columns (2)-(4) also include year fixed
effects.
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Table 4: Estimating learning speed β

(1) (2) (3) (4)
Social sk weight 0.135∗∗∗ -0.109∗∗∗ 0.0617∗ -0.185∗∗∗

(0.0246) (0.0243) (0.0323) (0.0471)
Physical sk weight 0.00450 0.0176 -0.0182 -0.167∗∗∗

(0.0282) (0.0277) (0.0294) (0.0484)
Technical sk weight 0.279∗∗∗ 0.106∗∗∗ -0.0290 -0.191∗∗∗

(0.0215) (0.0220) (0.0244) (0.0301)
Cognitive sk weight 0.449∗∗∗ 0.335∗∗∗ 0.126∗∗ 0.0774

(0.0387) (0.0372) (0.0498) (0.0740)
Weighted experience in Social sk 0.299∗∗∗ 0.193∗∗∗ 0.155∗∗∗ 0.112∗∗∗

(0.00670) (0.00983) (0.00971) (0.00976)
Weighted experience in Physical sk 0.177∗∗∗ 0.0681∗∗∗ 0.0340∗∗ 0.0301∗∗

(0.0109) (0.0140) (0.0138) (0.0138)
Weighted experience in Technical sk 0.186∗∗∗ 0.122∗∗∗ 0.143∗∗∗ 0.155∗∗∗

(0.0148) (0.0143) (0.0146) (0.0142)
Weighted experience in Cognitive sk 0.237∗∗∗ 0.247∗∗∗ 0.239∗∗∗ 0.220∗∗∗

(0.0250) (0.0257) (0.0261) (0.0278)
Age 0.0776∗∗∗ 0.0691∗∗∗ 0.0552∗∗∗

(0.0135) (0.0130) (0.0124)
Age squared -0.00167∗∗∗ -0.00148∗∗∗ -0.00123∗∗∗

(0.000255) (0.000245) (0.000233)
Ever married dummy 0.0453∗∗∗ 0.0423∗∗∗ 0.0361∗∗∗

(0.00851) (0.00815) (0.00765)
Years of education 0.0386∗∗∗ 0.0332∗∗∗ 0.0296∗∗∗

(0.00257) (0.00248) (0.00237)
Tenure in current job 0.00997∗∗∗ 0.0140∗∗∗ 0.0159∗∗∗

(0.00170) (0.00167) (0.00161)
Constant 2.192∗∗∗ 0.801∗∗∗ 0.922∗∗∗ 1.553∗∗∗

(0.0126) (0.150) (0.155) (0.214)
Broad occupations No No Yes No
Narrow occupations No No No Yes
Industry FE No No Yes Yes
Observations 53682 52724 52657 52657
Adjusted R2 0.270 0.320 0.349 0.401

Clustered standard errors in parentheses. FE estimator. All regressions include year fixed effects.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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statistically significant at the 1% level. Every additional unit of skill-specific experience

leads to accumulation of human capital. The coefficients of skill-weights – parameters α

from equation (5) – are also positive and significant (apart from physical skills), suggesting

that individuals enter the labor market with some positive expertise.

Gradually adding control variables does not affect the significance of the β coef-

ficients, which means that our measures of skill-specific experience have high explanatory

power even after taking into account workers’ education, tenure, industry, and occupa-

tion. The R2 in column (1) is also relatively high, suggesting that skill-specific experience

alone explains more than a fourth of the variation in wages.

The magnitudes of the coefficients differ across skills. According to the results

in column (4), experience in cognitive skills is associated with the quickest increase of

expertise. Expertise in technical and social skills is acquired somewhat slower: it will

take twice as much time to reach the same level of expertise in social skills compared to

cognitive skills for the same level of skill-specific experience. Experience in physical skills

is somewhat of an outlier. The β coefficient of physical skills is rather small in magnitude,

suggesting that workers accumulate little expertise in physical skills with experience. This

result is important for two reasons. First, it shows that our model, combined with the

applied dimensionality-reduction procedure, distinguishes between different types of skills.

Our measures of skill-specific experience do not simply proxy for the overall labor market

experience of the individual – on the contrary, they contain useful information about the

accumulated level of skill.23 Second, it tells us something about the nature of physical

skills. We will return to this last point later.

We can now use the estimated coefficients β from column (4) of Table 4 and

our empirical measure of skill-specific experience to compute unobserved expertise eis in

different skills. Specifically, we calculate expertise eis for every individual in our sample,

thus taking into account her employment history. We then average expertise across indi-

viduals with the same total labor market experience.24 Figure 4 plots average expertise

in our sample over the years in the labor market.

Overall, the ranking of skills in terms of accumulated expertise changed com-

pared to skill-specific experience. According to Figure 4, individuals in our sample ac-

cumulate the most expertise in social and technical skills. Cognitive skills, on the other

23We further confirm this conclusion by including the total years of labor market experience as an
additional control variable. Our estimates of β remain unchanged. Results are available upon request.

24We normalize α to zero for all skills, assuming that everybody enters the labor market with the same
level of initial expertise.
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hand, are relatively slow-growing: in 15 years of labor market experience NLSY97 respon-

dents reached only half as much expertise in cognitive as in social skills. Finally, expertise

in physical skills is rather flat, increasing only slightly with experience.
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Figure 4: Average expertise ēs against total years of labor market experience y.

Expertise is determined by skill-specific experience ỹ (which in turn depends on

occupational choices and skill-weights λ) and the learning rate β. Low beta coefficient

means that the speed of learning of the skill is low, and it takes a lot of experience

to accumulate expertise. High learning speed means that even low levels of experience

translate into relatively high expertise. Skill-specific experience is determined by the

choices the individuals make about their careers – which occupations they choose, when

and how much they work, whereas expertise is defined by the nature of the skill itself.

Comparing our estimates of expertise in Figure 4 with skill-specific experience presented

in Figure 1, we see that high level of experience in social skills accumulated in our sample

translates into high expertise in social skills. On average, workers practice social skills

a lot (ỹ is high). This, combined with a relatively high learning rate in social skills (β)

results in high expertise.

At the same time, we see some striking differences between the figure for skill-

specific experience and the figure for expertise. Although individuals in our sample get
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a similar level of experience in physical and technical skills, they do not transform this

experience into expertise in the corresponding skills in the same way. Physical skill was

the second most important skill in terms of experience – as discussed previously, young

individuals often work in physically-intensive occupations. All this experience, however,

does not contribute to expertise accumulation. Since the learning rate in physical skills

is very low, young workers do not gain additional human capital by practicing physical

tasks, and the expertise profile in physical skills is flat. On the contrary, high learning rate

in technical skills suggests that workers transform their experience into expertise quicker.

During the first decade in the labor market, individuals in our sample accumulate equally

high expertise in social and technical skills, despite the fact that experience in technical

skills is always below experience in social skills. High learning rates also compensate for

low accumulated experience in cognitive skills.

Expertise in physical skills diverges strongly from experience. Every additional

unit of labor market experience in physical skills leads to only a minor increase in expertise.

In other words, practicing physical skills does not increase human capital. This result

seems intuitive, as one could expect that there is less to learn in physical skills compared

to, for example, cognitive skills. Another potential reason for low learning rates in physical

skills is that physical labor leads to deterioration of a worker’s health. Moreover, workers

with a lot of experience in physical skills are less likely to find a non-manual job. Although

individuals in our sample accumulated a lot of experience in physical skills, they did not

gain expertise. Low expertise translates into lower wages, since wage is a weighted sum of

expertise in different skills. Hence, workers who work in occupations that demand physical

skills are not rewarded significantly more with the passage of time. More generally, the

heterogeneity in speed of expertise accumulation has important implications for wages: all

else being equal, high speed of expertise accumulation translates into higher wage growth.
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6 Heterogeneities in expertise

6.1 Gender

Our analysis of the estimation results in the previous section highlights some important

heterogeneities between skills, both in terms of level (measured by skill-specific experience)

and speed of accumulation. We find that individuals accumulate the most experience in

social skills, but cognitive skills are characterized by the highest learning speed. Expertise

in physical skills exhibits a flat profile – experience in physical skills does not increase

human capital. We now turn to the analysis of heterogeneities in skill accumulation

between individuals across two dimensions: gender and education.
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Figure 5: Average expertise ēs against total years of labor market experience y.

Figure 5 plots expertise in skills by years in the labor market for men and women.

The expertise profiles of men and women are qualitatively similar – the ranking of skills

in terms of expertise is the same for both groups. Over the first 15 years of labor market

work, young men and women accumulate the most expertise in social skills, and the least
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expertise in physical skills. However, expertise is more dispersed for women. Men seem

to gain more expertise in technical and cognitive skills, while women gain more expertise

in social skills. Furthermore, women may in fact be losing expertise in physical skills with

experience.

Comparing Figure 5 with Figure 2, we see a similar pattern in skill-specific expe-

rience: men are more experienced in technical and cognitive skills, and less experienced in

social skills than women. This similarity indicates that there are no significant differences

in the speed of skill accumulation between men and women – they gain expertise at the

same rate with labor market experience. The beta coefficients of the regression confirm

this conclusion.25 The only skill that has a significantly different β for men and women

is physical skill: the learning rate of physical skills for women is negative (although the

coefficient is not statistically significant in both regressions), and the expertise profile is

declining. Practicing physical skills depletes human capital for women.

The analysis of the expertise profiles of men and women allows us to reach

an important conclusion. The differences in expertise accumulation between men and

women are predominantly the consequence of occupational choices: women accumulate

less expertise in technical and cognitive skills because they concentrate in occupations

with lower requirement of these skills.26 According to Appendix Table 9, the average

technical (cognitive) skill weight for women is 0.15 (0.05), compared to 0.21 (0.09) for

men. However, the speed with which men and women accumulate expertise is the same.

Physical skill is an outlier: although women work in occupations that require physical

skills (experience in physical skills is on average similar to experience in technical skills),

this experience does not contribute to their expertise, and might even have a negative

impact on their wage.

6.2 Education

Finally, we analyze the patters of expertise accumulation across education groups. We

split our sample into two groups based on education level, with high education group

25If anything, women learn cognitive and technical skills somewhat quicker than men, although the
difference in learning rates is not statistically significant. Appendix Table 10 shows the regression results.

26Our conclusions do not say anything regarding gender discrimination in the labor market. In this
section, we document the differences in the realized skill-specific experience between men and women in
our sample. We do not attempt to identify the reason that men and women make different choices, nor
to provide evidence on the existence of discrimination by employers.
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comprising of individuals with some college education. The expertise profiles by years in

the labor market are presented in Figure 6 (see Appendix Table 11 for regression results).
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Figure 6: Average expertise ēs against total years of labor market experience y.

At first glance, the results presented in Figure 6 are somewhat counterintuitive.27

The less educated respondents attain slightly higher level of expertise in social and cogni-

tive skills, and a significantly higher level of expertise in physical skills. College-educated

individuals have an advantage only in technical skills. The distribution of expertise for

highly educated respondents is more dispersed.

Comparing Figure 6 with Figure 3, we see that the expertise profiles are quite

distinct from the patterns of skill-specific experience. This means that, in contrast to the

gender results, there are crucial differences in the speed of expertise accumulation between

individuals with different educational background. According to the regression estimation

in Appendix Table 11, college-educated individuals gain expertise in social skills slightly

slower than the non-college educated. Thus, although individuals with more education

have more experience in this skill (and on average self-select into occupations with higher

27We cannot of course exclude the possibility that some of these estimates are biased according to the
processes described in Lemma 3.
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social skill requirement), less of this experience is transformed into expertise. On the

other hand, the speed of expertise accumulation in technical skills is significantly higher

for college graduates, which results in a high level of expertise despite lower skill-specific

experience. As before, physical skills represent a special case: the beta coefficient is

slightly negative for college graduates and significantly positive for the less educated.

This means that experience in physical skills may lead to depletion of human capital for

the college educated, while those with less years of education gain expertise (albeit slowly)

while practicing physical skills.

One important driver of our results is the fact that people with college education

put in less hours of work in the beginning of their working career (see Appendix Figure

13). An individual with a high-school degree is more likely to start working full-time and

have a strong attachment as soon as she enters the labor market, while a college student

is more likely to only work part-time at the beginning, and have a lot of labor market

interruptions during her studies. If this is the case, a less educated individual with 5 years

of labor market experience is not directly comparable with a college graduate with 5 years

of experience, as the latter is not as attached to the labor market at the beginning.

Finally, the regression results presented in Appendix Table 11 lead to several

interesting observations. First, the R2 of the regression for the highly educated is much

higher than for the less educated. It seems that our measures of skill explain the vari-

ation in wages of the college educated much better. This suggests a possibility of other

dimensions of skills that are more important for the less educated workers but are not

accounted for in the current model. Second, the analysis of skill-specific experience and

the speed of expertise accumulation across education groups points us to the conjecture

that “highly educated” does not necessarily mean “highly skilled”. As mentioned ear-

lier, education does not determine expertise that a person can accumulate. Nevertheless,

the heterogeneity analysis of expertise along education dimension presents some puzzling

results that merit further exploration.
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7 Additional results

7.1 Robustness checks

The results of our analysis, summarized in Table 4, suggest that expertise grows with

skill-specific experience, and that the learning rate is heterogeneous across the four skills.

However, as highlighted in Section 2.1, the reliability and the interpretation of our esti-

mates depend on two important assumptions: (1) weights λ capture market price of skills

and (2) the correlation between individual-specific learning rate and λ or ỹ is zero. Here,

we explore the robustness of our results in cases when the above assumptions do not hold.

The first column of Table 5 replicates our baseline results with broad occupation

groups as control variables.28 Both the magnitude and the significance of the coefficients

βs are similar to the ones reported as our main results.

Column (2) of Table 5 includes Occupation×Year fixed effects. This specification

relaxes assumption (1). If occupation weights λ do not fully reflect the market price of

skills, then using Occupation×Year fixed effects can help to control for the relative price

changes across occupations. The results remain unchanged.

In column (3), we follow Gathmann and Schönberg (2010) and replicate our

analysis with bootstrapped standard errors to correct for the generated regressor bias.

This procedure leaves our baseline estimates unchanged.

Finally, in column (4) of Table 5 we attempt to relax the assumption (2) de-

scribed above. Specifically, we try to take care of the correlation between individual-

specific learning rates and occupation selection (Lemma 3). We implement an adap-

tation of a well-known instrumental variable (IV) estimator first suggested by Altonji

and Shakotko (1987). We instrument λsotỹist from equation (10) with λsotŷist, where

ŷist = ỹist− ȳis and ȳis is the average skill-specific experience in skill s of individual i over

her entire career. The usefulness of this instrumental variable rests on the fact that it

is not correlated with the individual-specific component of learning ability, because the

latter should be driving only the average skill-specific experience over the career. For

example, a person with high individual learning ability in cognitive skills may be more

28In all of the robustness checks we use broad occupations instead of narrow occupations to control for
occupation fixed effects. This is because the number of narrow occupations is too high to conduct most
of the robustness checks for a given number of observations.
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Table 5: Robustness checks: estimating learning speed β with alternative methodologies

Baseline Occ × Year FE Bootstrap SE IV
Social sk weight 0.0616∗ 0.126∗∗∗ 0.0616∗ 0.0683∗∗

(0.0323) (0.0364) (0.0365) (0.0324)
Physical sk weight -0.0183 -0.00747 -0.0183 -0.0105

(0.0294) (0.0305) (0.0279) (0.0294)
Technical sk weight -0.0290 0.0274 -0.0290 -0.0262

(0.0245) (0.0262) (0.0221) (0.0244)
Cognitive sk weight 0.127∗∗ 0.0912∗ 0.127∗∗ 0.135∗∗∗

(0.0498) (0.0532) (0.0559) (0.0496)
Weighted experience in Social sk 0.155∗∗∗ 0.143∗∗∗ 0.155∗∗∗ 0.146∗∗∗

(0.00971) (0.0118) (0.0109) (0.00965)
Weighted experience in Physical sk 0.0340∗∗ 0.0374∗∗ 0.0340∗∗ 0.0243∗

(0.0138) (0.0169) (0.0149) (0.0137)
Weighted experience in Technical sk 0.143∗∗∗ 0.120∗∗∗ 0.143∗∗∗ 0.139∗∗∗

(0.0146) (0.0160) (0.0135) (0.0145)
Weighted experience in Cognitive sk 0.238∗∗∗ 0.212∗∗∗ 0.238∗∗∗ 0.230∗∗∗

(0.0261) (0.0346) (0.0236) (0.0255)
Broad occupations Yes Yes Yes Yes
Industry FE Yes Yes Yes Yes
Observations 52657 52657 52657 52657
Adjusted R2 0.349 0.357 0.349

All regressions include year fixed effects.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

likely to have a high skill-specific experience in cognitive skills on average in her career,

but the deviation of skill-specific experience from the average will not be likewise related

to the individual learning ability. Implementing this IV estimator also leaves our baseline

results unchanged.

Several robustness checks are conducted pertaining to sample selection. Specif-

ically, we drop the youngest individuals (<14 or <16 in 1997) from our sample. It is

possible, for instance, that the importance of experience in physical skills in a wage re-

gression is an artifact of the young age of the sample, and that these skills would not

matter in a more mature sample. In a similar spirit, we replicate our results disregarding

any work experience gained before graduating from high school. In both exercises, our

main results remain valid.29

The final robustness checks once again look into the potential bias described

in Lemma 3. In Table 6, we try to directly measure the quality of the match between

worker and occupation. Good match between a worker and an occupation can be posi-

tively correlated with skill-specific experience, and at the same time can have a positive

effect on wage through channels other than experience. Using the data on college atten-

dance from NLSY97, we compare the last chosen college specialization (major) with a

worker’s current occupation. We then create a dummy variable Good match equal to 1 if

29Results are available upon request.
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Table 6: Estimating equation (10) for those with college degree, controlling for match
quality.

Baseline high Match quality Firm size Both with Occ × Year FE
Social sk weight 0.164∗∗∗ 0.177∗∗∗ 0.268∗∗∗ 0.340∗∗∗

(0.0493) (0.0501) (0.0576) (0.0657)
Physical sk weight 0.0203 0.0348 0.0838 0.136∗∗

(0.0487) (0.0488) (0.0578) (0.0635)
Technical sk weight -0.0203 -0.0106 -0.0333 0.0339

(0.0375) (0.0382) (0.0414) (0.0465)
Cognitive sk weight 0.172∗∗ 0.177∗∗ 0.129 0.142

(0.0741) (0.0753) (0.0815) (0.0906)
Weighted experience in Social sk 0.134∗∗∗ 0.125∗∗∗ 0.153∗∗∗ 0.141∗∗∗

(0.0143) (0.0144) (0.0157) (0.0185)
Weighted experience in Physical sk 0.00821 -0.00461 -0.00157 -0.0220

(0.0295) (0.0284) (0.0285) (0.0336)
Weighted experience in Technical sk 0.179∗∗∗ 0.167∗∗∗ 0.183∗∗∗ 0.140∗∗∗

(0.0206) (0.0208) (0.0216) (0.0257)
Weighted experience in Cognitive sk 0.211∗∗∗ 0.209∗∗∗ 0.195∗∗∗ 0.189∗∗∗

(0.0304) (0.0305) (0.0292) (0.0461)
Good match 0.0848∗∗∗ 0.0776∗∗∗

(0.0152) (0.0178)
Big firm 0.0751∗∗∗ 0.0769∗∗∗

(0.0108) (0.0109)
Broad occupations Yes Yes Yes Yes
Occupation × Year FE No No No Yes
Industry FE Yes Yes Yes Yes
Observations 21581 21115 14618 14318
Adjusted R2 0.453 0.457 0.488 0.504

Clustered standard errors in parentheses. FE estimator. All regressions include year fixed effects.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

occupation fits with previous college specialization, and zero otherwise. For example, if a

worker majored in Business management, and her current occupation belongs to a broad

group 11 (Management occupations) or 13 (Business and Financial Operations occupa-

tions), she will be considered a good match with her current occupation.30 Since college

specializations are only available for those who actually attended college, for this exercise

we restrict our sample to individuals with college education.

The first column of Table 6 shows the baseline results for a college-educated

sample. Here, experience in physical skills is no longer statistically significant, as physical

skills do not contribute to expertise of highly educated workers. Column (2) includes our

proxy for match quality. The coefficient of Good match dummy is positive and statistically

significant: workers receive 8.5 percentage points higher wage when they work in occupa-

tions that fit their college specialization. This is a within-individual effect. Nevertheless,

our main results remain unchanged even controlling for match quality.

Another potential source of correlation analyzed in Section 2.1 are firm-specific

30The crosswalk between majors and broad occupations is available upon request.
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skill weights λ. By construction, occupational skill requirements in our model vary only

across occupations and time. It is easy, however, to imagine a scenario in which skill

requirements are both occupation- and firm-specific. This would be the case if firms that

are more productive systematically require higher level of skills. The unobserved firm-

specific heterogeneity in skill weights λ will then enter the error term, and will generate

bias if correlated with both wages and skill-specific experience ỹ. In other words, if

workers in more productive firms accumulate more skill-specific experience and receive

higher wages, the estimates of learning rates β might be upward biased. To check whether

firm productivity affects our results, in column (3) of Table 6 we include a dummy variable

Big firm equal to 1 if the number of employees in the worker’s current firm exceeds 249.

The dummy variable is statistically significant and high in magnitude: workers in bigger

firms on average receive 7.5 percentage points higher wages. Our coefficients of interest,

however, remain qualitatively unchanged.31

Finally, in column (4) we add both the match quality dummy and the firm

size dummy, and include Occupation×Year fixed effects. Although the magnitude of β

coefficient for experience in technical and cognitive skills is slightly reduced, overall both

qualitatively and quantitatively our results are unaffected.

The robustness checks performed in this section are designed to investigate the

presence of potential biases. On the one hand, weights λ might not fully incorporate the

market price of skills, which means that βs captures not only the learning rate, but also

the part of skill price. On the other hand, we cannot exclude the possibility of an omitted

variable bias due to correlation between the error term and λ or ỹ (such as unobserved

match quality or firm size). According to the estimation in column (4) of Table 6, neither

of the biases significantly influences our results. Of course, the dummy variables Good

match and Big firm might be naive proxies, which only control for one potential source of

the correlation between the error term and occupation selection or skill-specific experience.

Nevertheless, the evidence presented in Tables 5 and 6 suggests that our main results are

robust.

31Interestingly, controlling for firm size does not affect the magnitude of β coefficients symmetrically.
The coefficient of experience in cognitive skills becomes smaller, suggesting the presence of a small but
anticipated upward bias – bigger firms require higher level of cognitive skills. On the other hand, the
coefficient of experience in social skills goes up, indicating a downward bias when firm size is not taken
into account – bigger firms require less social skills.
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7.2 Square of skill-specific experience

In our theoretical setup, skill-specific productivity of workers – expertise – is a linear

function of skill-specific experience ỹ. According to equation (5), expertise eis of individual

i in skill s depends on her skill-specific experience ỹis in a linear fashion, with parameters

αs and βs guiding the relationship. While such a specification brings simplicity and

interpretability to the estimation, it is possible that the true relationship between expertise

and experience is more complex. It is common, for instance, to control for a polynomial of

(potential) experience in Mincer-type wage regressions to capture the diminishing returns

to expertise. In this section, we introduce a second-order polynomial to equation (5).

Specifically, expertise of worker i in skill s can now be described as follows:

eis = αs + βsỹis + γsỹ
2
is + ϵis (13)

The resulting regression equation then takes the following form:

wio =
S∑

s=1

αsλso +
S∑

s=1

βsλsoỹis +
S∑

s=1

γsλsoỹ
2
is +

S∑
s=1

λsoϵis + uio (14)

Table 7 shows the estimation results for the polynomial specification. Column

(1) contains our baseline estimates of the learning speed. The squared terms of skill-

specific experience are added in column (2). As before, the regressions control for age and

age squared, marital dummy, years of education, and tenure in current job, and include

individual, year, narrow occupation and broad industry fixed effects.

According to Table 7, coefficients γ in all four skills are statistically significant

(at the 1% level except for physical skills) and negative. The negative sign of the coeffi-

cients suggests that skill-specific experience can be characterized by diminishing marginal

returns: every additional unit of skill-specific experience contributes to the accumulation

of expertise at a decreasing rate. Of course, the introduction of a squared experience has

affected the magnitude of the β coefficients. However, the original ranking is preserved.

Even with the polynomial specification individuals accumulate expertise in cognitive skills

and the highest rate, followed by technical, social, and lastly physical skills.

Adding a second-order polynomial somewhat complicates the interpretation of

the coefficients in terms of learning speed, but it may also be making the dynamics

significantly more realistic. In particular, cognitive skills are accumulated very quickly
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Table 7: Estimating β and γ

(1) (2)
Social sk weight -0.185∗∗∗ -0.210∗∗∗

(0.0471) (0.0474)
Physical sk weight -0.167∗∗∗ -0.180∗∗∗

(0.0484) (0.0503)
Technical sk weight -0.191∗∗∗ -0.223∗∗∗

(0.0301) (0.0339)
Cognitive sk weight 0.0774 -0.119

(0.0740) (0.0781)
Weighted experience in Social sk 0.112∗∗∗ 0.194∗∗∗

(0.00976) (0.0209)
Weighted experience in Physical sk 0.0301∗∗ 0.0706∗∗∗

(0.0138) (0.0260)
Weighted experience in Technical sk 0.155∗∗∗ 0.274∗∗∗

(0.0142) (0.0279)
Weighted experience in Cognitive sk 0.220∗∗∗ 0.654∗∗∗

(0.0278) (0.0662)
Weighted experience in Social sk, sq -0.0166∗∗∗

(0.00364)
Weighted experience in Physical sk, sq -0.00884∗

(0.00460)
Weighted experience in Technical sk, sq -0.0423∗∗∗

(0.00652)
Weighted experience in Cognitive sk, sq -0.110∗∗∗

(0.0158)
Broad occupations No No
Narrow occupations Yes Yes
Industry FE Yes Yes
Observations 52657 52657
Adjusted R2 0.401 0.403

Clustered standard errors in parentheses. FE estimator. All regressions include year fixed effects.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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(based on the β coefficient), but the returns to experience in cognitive skills diminish at

a high rate as well. In order to evaluate the speed of expertise accumulation while taking

into account both β and γ, we examine the expertise profiles in Figure 7, and compare

them with those in Figure 4.
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Figure 7: Average expertise ēs against total years of labor market experience y.

The inclusion of the second-order polynomial drastically changes the expertise

profile in cognitive skills. According to Figure 4, expertise in cognitive skills was accu-

mulated rather slowly. The expertise profile was driven by the low level of skill-specific

experience in cognitive skills, which resulted in low level of expertise despite the highest

learning rate. Adding a square of experience boosts the speed of acquisition of cognitive

skills significantly. As depicted in Figure 7, expertise in cognitive skills is gained very

quickly at the beginning of a worker’s career. After 15 years in the labor market, the

workers in our sample accumulate similar levels of expertise in social and cognitive skills,

despite having very little experience in the latter. The behavior of other skills is not

affected by the square of experience.

The results presented above emphasize the potential importance of allowing

for a more complex relationship between expertise and skill-specific experience. Linear

dependency underestimates the speed of learning of cognitive skills at the beginning of a
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worker’s career (and potentially overestimates the learning rate at a later stage).

8 Conclusion

In this paper, we introduced a new concept of skill-specific experience. We measured

this variable by combining the data on occupational skill requirements from O*NET with

occupational histories from NLSY97. We found that the skill-specific experience profiles

can vary both across skill categories and across different demographic groups. In the

regression setting, we showed that skill-specific experience is a good proxy for expertise

in different skills. The resulting estimates correspond to skill-specific learning rates while

on the job. To our knowledge, we are the first to explicitly estimate learning rates in

multidimensional skills. At the same time, we classified possible sources and directions

of bias and showed ways to correct for the bias. Conceptually, our research introduced a

framework that is flexible and mostly agnostic regarding the structure of the labor market

in general and occupational choice in particular. Thus, a wide range of labor market

structures can fit our framework for the purpose of studying skill-specific experience or

expertise.

At the beginning of their career young individuals accumulate the most expe-

rience in social and physical skills. They enter the labor market by working part-time

in occupations that require no special qualifications, such as cashiers, waiters, and retail

salespersons. Over the course of their career they gradually switch away from physically-

intensive occupations, gaining the most experience in social skills. Moreover, there ex-

ist heterogeneities in the level of skill-specific experience across gender and education.

Men and non-college educated respondents seem to specialize more in technically- and

physically-intensive occupations, while women and individuals with some college educa-

tion concentrate in occupations with higher requirements of social skills.

Expertise in different skills grows with skill-specific experience. Our estimates

of parameter βs are positive and statistically significant for all skills. Cognitive skills can

be characterized by the highest speed of learning: individuals quickly gain expertise in

these skills by working in cognitively demanding occupations. The expertise profile in

cognitive skills is steep and increasing despite the fact that the workers in our sample ac-

cumulate little experience in such skills. Physical skills represent an outlier, as experience
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in occupations that require physical labor seems to affect expertise in these skills only

marginally. This result highlights the unproductive nature of physical skills, as practicing

these skills does not lead to accumulation of human capital. The heterogeneity analysis of

the learning speed shows that there are considerable differences in expertise accumulation

between men and women despite the fact that their learning speed in most skills is very

similar. Hence, past occupational choices are an important determinant of expertise in

different skills.

An important assumption underlying the interpretation of our main results is

that individual-specific variables (related to the learning rate) do not drive occupational

choice. We have addressed the concerns about the bias with a range of robustness exer-

cises, including an IV estimator and controls for match quality and firm productivity. The

impressive robustness of our results suggests that any bias is small and negligible, and

we cautiously interpret our estimates as true learning rates of skills in a young sample.

Further research could introduce explicit occupation matching functions to our setup,

and use simulation methods in estimation. This may lead to less general results, as the

occupation matching function has to be chosen, but may allow to estimate skill-specific

depreciation and skill-specific learning rates in education.

Finally, a vital component of our paper is the measures of weights that are as-

sociated with skills for each occupation. O*NET provides the best possible data for the

construction of such weights. However, these data are produced through surveys and are

prone to framing effects and potentially complex judgment calls. Given the inevitable

noise in the data, we consider the statistical significance of our estimates a success. In

addition, the study of multidimensional skills poses the challenge of the reduction of avail-

able data on skill requirements to a manageable set. We have suggested NMF as a valid

approach to select the most representative skills within O*NET, which also allows us to in-

terpret the dimensions of skill. Apart from nonnegativity of the components, our method

is superior to the standard PCA methodology, as it makes the selection of skills more

objective. However, the question of dimensionality reduction remains important, as there

is no clear method to follow. A comparative analysis based on different dimensionality

reduction approaches could be fruitful for the literature.
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Appendix

A1 Baseline sample

To construct our baseline sample, we implemented the following cleaning procedures:

– introduce a cap on hours worked per week at 112, assuming that individual can

work a maximum of 16 hours per day 7 days a week;

– introduce a cap on hours worked per year at 5,824 hours, assuming that individual

can work a maximum of 16 hours per day 7 days a week;

– replace missing hours worked per year with weeks worked per year, multiplied by

40 (in case we know weeks worked but not the hours)

– correct hourly wages for inflation, using CPI provided by OECD, with 2015 as base

year (Source: https://data.oecd.org/price/inflation-cpi.htm). Replace wage with

missing for wages above 99th and below 1st percentiles.

Given the relatively small number of individuals with complete working histories, we

have attempted to impute missing values when possible. The following variables contain

imputed values:

– marital status. We use reverse cascade (filling in values at t based on values at

t+ 1) for the cases of “never married”. We also replace missing values with “never

married” for those with age below 17, as they are likely to be below the legal

marriage age.

– age. Replace missing at t with age at t− 1 plus one.

– highest degree received yearly (degree_year). We fill in the missing value at t if

value at t − 1 is equal to the value at t + 1. We use the same technique in cases

of several missing values. Finally, we compare degree_year with highest degree

received ever (a time-invariant variable degree_ever). In cases when degree_year

is not missing and equal to degree_ever, we use cascade to replace all the following

missing values in degree_year.



– job identifier (jobid). We fill in the missing value at t if jobid at t − 1 is equal

to jobid at t + 1, and individual was employed at t. We use the same technique

in cases of several missing values. We also impute jobid on a case-by-case basis

(for example, based on the information on labor force participation status and job

identifiers in the following year, we can deduce the year in which the job switch

occurred). Note, however, that these imputations affect our baseline sample only in

cases when they are not accompanied by missing information on occupations. All

the individuals with missing occupation information get dropped even if we imputed

jobid.

– occupation. We fill in the missing value at t if occupation at t − 1 is equal to

occupation at t+ 1, and individual was employed at t. We use the same technique

in cases of several missing values, but only if jobid doesn’t change (it is unlikely that

individual would change her occupation, and then return to her previous occupation

while working for the same employer).

The following control variables were created:

– years of education (time-varying). This variable was generated based on the infor-

mation on highest grade, highest degree received yearly (degree_year) and highest

degree received ever (degree_ever). We assume that one needs 14 years of studying

(12 years of school and 2 years of college) to obtain an Associates degree, 16 years

of studying to get a Bachelor degree, 18 years to get a Master degree, and 20 years

to get a PhD.

– labor force participation status. This variable was generated based on weekly em-

ployment arrays. We create two variables capturing labor force participation status:

if respondent worked for at least 12 weeks during the year, and if respondent worked

during the last week of the year.

– labor market experience (time-varying). This variable was generated based on the

labor force participation status. We set labor market experience equal to one during

the first year of employment. Experience then mechanically increases by one in each

year with positive labor force participation status, and remains the same for years

in which respondent was not employed.



A2 Skill categories from O*NET

Table 8: List of narrow Abilities, Skills and Knowledge categories, downloaded from
O*NET to compute λsot

Group Subgroup Skill Title

Abilities Cognitive Abilities Oral Comprehension

Abilities Cognitive Abilities Written Comprehension

Abilities Cognitive Abilities Oral Expression

Abilities Cognitive Abilities Written Expression

Abilities Cognitive Abilities Fluency of Ideas

Abilities Cognitive Abilities Originality

Abilities Cognitive Abilities Problem Sensitivity

Abilities Cognitive Abilities Deductive Reasoning

Abilities Cognitive Abilities Inductive Reasoning

Abilities Cognitive Abilities Information Ordering

Abilities Cognitive Abilities Category Flexibility

Abilities Cognitive Abilities Mathematical Reasoning

Abilities Cognitive Abilities Number Facility

Abilities Cognitive Abilities Memorization

Abilities Cognitive Abilities Speed of Closure

Abilities Cognitive Abilities Flexibility of Closure

Abilities Cognitive Abilities Perceptual Speed

Abilities Cognitive Abilities Spatial Orientation

Abilities Cognitive Abilities Visualization

Abilities Cognitive Abilities Selective Attention

Abilities Cognitive Abilities Time Sharing

Abilities Psychomotor Abilities Arm-Hand Steadiness

Abilities Psychomotor Abilities Manual Dexterity

Abilities Psychomotor Abilities Finger Dexterity

Abilities Psychomotor Abilities Control Precision

Abilities Psychomotor Abilities Multilimb Coordination

Abilities Psychomotor Abilities Response Orientation

Abilities Psychomotor Abilities Rate Control

Abilities Psychomotor Abilities Reaction Time

Abilities Psychomotor Abilities Wrist-Finger Speed

Abilities Psychomotor Abilities Speed of Limb Movement

Abilities Physical Abilities Static Strength

Abilities Physical Abilities Explosive Strength

Abilities Physical Abilities Dynamic Strength

Abilities Physical Abilities Trunk Strength

Abilities Physical Abilities Stamina

Abilities Physical Abilities Extent Flexibility

Abilities Physical Abilities Dynamic Flexibility

Abilities Physical Abilities Gross Body Coordination

Abilities Physical Abilities Gross Body Equilibrium

Abilities Sensory Abilities Near Vision

Abilities Sensory Abilities Far Vision

Abilities Sensory Abilities Visual Color Discrimination

Abilities Sensory Abilities Night Vision



Abilities Sensory Abilities Peripheral Vision

Abilities Sensory Abilities Depth Perception

Abilities Sensory Abilities Glare Sensitivity

Abilities Sensory Abilities Hearing Sensitivity

Abilities Sensory Abilities Auditory Attention

Abilities Sensory Abilities Sound Localization

Abilities Sensory Abilities Speech Recognition

Abilities Sensory Abilities Speech Clarity

Basic Skills Content Reading Comprehension

Basic Skills Content Active Listening

Basic Skills Content Writing

Basic Skills Content Speaking

Basic Skills Content Mathematics

Basic Skills Content Science

Basic Skills Process Critical Thinking

Basic Skills Process Active Learning

Basic Skills Process Learning Strategies

Basic Skills Process Monitoring

Cross-Functional Skills Social Skills Social Perceptiveness

Cross-Functional Skills Social Skills Coordination

Cross-Functional Skills Social Skills Persuasion

Cross-Functional Skills Social Skills Negotiation

Cross-Functional Skills Social Skills Instructing

Cross-Functional Skills Social Skills Service Orientation

Cross-Functional Skills Complex Problem-Solving Skills Complex Problem Solving

Cross-Functional Skills Technical Skills Operations Analysis

Cross-Functional Skills Technical Skills Technology Design

Cross-Functional Skills Technical Skills Equipment Selection

Cross-Functional Skills Technical Skills Installation

Cross-Functional Skills Technical Skills Programming

Cross-Functional Skills Technical Skills Operation Monitoring

Cross-Functional Skills Technical Skills Operation and Control

Cross-Functional Skills Technical Skills Equipment Maintenance

Cross-Functional Skills Technical Skills Troubleshooting

Cross-Functional Skills Technical Skills Repairing

Cross-Functional Skills Technical Skills Quality Control Analysis

Cross-Functional Skills Systems Skills Judgment and Decision Making

Cross-Functional Skills Systems Skills Systems Analysis

Cross-Functional Skills Systems Skills Systems Evaluation

Cross-Functional Skills Resource Management Skills Time Management

Cross-Functional Skills Resource Management Skills Management of Financial Resources

Cross-Functional Skills Resource Management Skills Management of Material Resources

Cross-Functional Skills Resource Management Skills Management of Personnel Resources

Knowledge Business and Management Administration and Management

Knowledge Business and Management Clerical

Knowledge Business and Management Economics and Accounting

Knowledge Business and Management Sales and Marketing

Knowledge Business and Management Customer and Personal Service

Knowledge Business and Management Personnel and Human Resources

Knowledge Manufacturing and Production Production and Processing

Knowledge Manufacturing and Production Food Production

Knowledge Engineering and Technology Computers and Electronics



Knowledge Engineering and Technology Engineering and Technology

Knowledge Engineering and Technology Design

Knowledge Engineering and Technology Building and Construction

Knowledge Engineering and Technology Mechanical

Knowledge Mathematics and Science Mathematics

Knowledge Mathematics and Science Physics

Knowledge Mathematics and Science Chemistry

Knowledge Mathematics and Science Biology

Knowledge Mathematics and Science Psychology

Knowledge Mathematics and Science Sociology and Anthropology

Knowledge Mathematics and Science Geography

Knowledge Health Services Medicine and Dentistry

Knowledge Health Services Therapy and Counseling

Knowledge Education and Training Education and Training

Knowledge Arts and Humanities English Language

Knowledge Arts and Humanities Foreign Language

Knowledge Arts and Humanities Fine Arts

Knowledge Arts and Humanities History and Archeology

Knowledge Arts and Humanities Philosophy and Theology

Knowledge Law and Public Safety Public Safety and Security

Knowledge Law and Public Safety Law and Government

Knowledge Communications Telecommunications

Knowledge Communications Communications and Media

Knowledge Business and Management Transportation



A3 O*NET questionnaires

For each occupational characteristic within Skills, Knowledge and Abilities, O*NET ques-

tionnaires contain two questions: one estimates the importance of the characteristic, and

the other evaluates the level of the characteristic required to perform a job. The level

of characteristic can vary between 1 and 7, with 7 being the highest skill requirement.

Furthermore, the level scale has anchors to help the respondents identify the level of skill

requirement (in the example below the anchors are on levels 1, 5 and 7). We use only the

level information to generate skill weights λ.

Figure 8: Example question from O*NET Knowledge questionnaire
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Figure 9: Level of skills from group Ability that were required in Production Occupations
in 2002 and 2017. Production required more cognitive and fewer physical skills in 2017
compared to 2002.



A4 Dimensionality reduction procedure

Figure 10: Elbow method. According to the elbow method, the optimal number of skills is
3 (elbow at k=3).

Figure 11: Silhouette method. According to the silhouette method, any number of skills
between 2 and 5 is acceptable.



A5 Reduced skills
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Figure 12: Estimated λ in social (y-axis) and technical (x-axis) skills for two occupation
groups: Sales and Installation. Each dot represents a narrow occupation within broad occu-
pation groups.

A6 Average skill weights

Table 9: Average skill weights λ in the sample.

All Women Men No college College

mean sd mean sd mean sd mean sd mean sd

Social sk weight 0.31 0.17 0.36 0.14 0.24 0.17 0.27 0.16 0.36 0.17

Physical sk weight 0.24 0.15 0.20 0.12 0.29 0.16 0.27 0.14 0.19 0.14

Technical sk weight 0.18 0.16 0.15 0.15 0.21 0.17 0.18 0.15 0.18 0.17

Cognitive sk weight 0.07 0.10 0.05 0.07 0.09 0.11 0.06 0.08 0.08 0.11

Observations 59528 31116 28412 35366 23973



A7 Weekly hours worked
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Figure 13: Weekly hours worked over years in the labor market by education groups.
College stands for people with some college degree (Associates, Bachelors, Masters or PhD
degree), No college stands for people without college degree (GED, high-school diploma or
no degree at all).



A8 Heterogeneities

Table 10: Estimating equation (10) by gender.

(1) (2)

Women Men

Social sk weight -0.251∗∗∗ -0.152∗∗

(0.0671) (0.0666)

Physical sk weight -0.170∗∗ -0.106

(0.0730) (0.0668)

Technical sk weight -0.186∗∗∗ -0.183∗∗∗

(0.0464) (0.0400)

Cognitive sk weight 0.117 -0.0509

(0.129) (0.0925)

Weighted experience in Social sk 0.115∗∗∗ 0.132∗∗∗

(0.0125) (0.0157)

Weighted experience in Physical sk -0.0605 0.0182

(0.0386) (0.0162)

Weighted experience in Technical sk 0.156∗∗∗ 0.137∗∗∗

(0.0246) (0.0174)

Weighted experience in Cognitive sk 0.216∗∗∗ 0.203∗∗∗

(0.0656) (0.0314)

Age 0.0361∗∗ 0.0829∗∗∗

(0.0167) (0.0182)

Age squared -0.000808∗∗ -0.00182∗∗∗

(0.000317) (0.000338)

Ever married dummy 0.0119 0.0744∗∗∗

(0.00991) (0.0117)

Years of education 0.0358∗∗∗ 0.0199∗∗∗

(0.00313) (0.00355)

Tenure in current job 0.0149∗∗∗ 0.0178∗∗∗

(0.00228) (0.00225)

Constant 1.602∗∗∗ 1.413∗∗∗

(0.270) (0.299)

Narrow occupations Yes Yes

Industry FE Yes Yes

Observations 27702 24955

Adjusted R2 0.406 0.421

Clustered standard errors in parentheses. FE estimator. All regressions include year fixed effects.

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01



Table 11: Estimating equation (10) by education.

(1) (2) (3)

Baseline Low High

Social sk weight -0.185∗∗∗ -0.100∗ -0.310∗∗∗

(0.0471) (0.0585) (0.0783)

Physical sk weight -0.167∗∗∗ -0.165∗∗∗ -0.235∗∗∗

(0.0484) (0.0614) (0.0807)

Technical sk weight -0.191∗∗∗ -0.136∗∗∗ -0.250∗∗∗

(0.0301) (0.0377) (0.0480)

Cognitive sk weight 0.0774 0.103 -0.105

(0.0740) (0.0970) (0.123)

Weighted experience in Social sk 0.112∗∗∗ 0.109∗∗∗ 0.0862∗∗∗

(0.00976) (0.0143) (0.0137)

Weighted experience in Physical sk 0.0301∗∗ 0.0628∗∗∗ -0.0119

(0.0138) (0.0168) (0.0291)

Weighted experience in Technical sk 0.155∗∗∗ 0.111∗∗∗ 0.192∗∗∗

(0.0142) (0.0180) (0.0210)

Weighted experience in Cognitive sk 0.220∗∗∗ 0.188∗∗∗ 0.187∗∗∗

(0.0278) (0.0501) (0.0330)

Age 0.0552∗∗∗ 0.0969∗∗∗ 0.0118

(0.0124) (0.0152) (0.0219)

Age squared -0.00123∗∗∗ -0.00211∗∗∗ -0.000399

(0.000233) (0.000281) (0.000419)

Ever married dummy 0.0361∗∗∗ 0.0284∗∗∗ 0.0390∗∗∗

(0.00765) (0.0101) (0.0117)

Years of education 0.0296∗∗∗ 0.00941∗∗ 0.0255∗∗∗

(0.00237) (0.00460) (0.00441)

Tenure in current job 0.0159∗∗∗ 0.0228∗∗∗ 0.00786∗∗∗

(0.00161) (0.00203) (0.00259)

Constant 1.553∗∗∗ 1.271∗∗∗ 2.105∗∗∗

(0.214) (0.303) (0.292)

Narrow occupations Yes Yes Yes

Industry FE Yes Yes Yes

Observations 52657 31076 21581

Adjusted R2 0.401 0.330 0.507

Clustered standard errors in parentheses. FE estimator. All regressions include year fixed effects.

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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