
SDFPricing: A Julia Package for Asset Pricing
Based on a Stochastic Discount Factor Process

Errikos Melissinos∗

2024-04-24

Latest Draft

Abstract

I introduce a package in the Julia programming language to perform asset
pricing based on a stochastic discount factor in continuous time. Prices are
computed through Monte Carlo simulations according to a pricing partial dif-
ferential equation and the corresponding Feynman-Kac formula. At this stage
it is possible to compute a) prices of zero-coupon fixed income securities and
b) price-dividend ratios, which also allow the calculation of prices and returns
of these securities. The package is focused on ease of use and is meant to be
used in research and teaching. I illustrate the functionality of the package
with examples and an application. In particular, I show how asset prices react
after shifts in economic variables within a consumption-based model, and I
discuss to what extent these shifts can be classified as monetary policy shocks
or information shocks in connection to monetary policy announcements.

JEL: C63, E43, G12
Keywords: Asset Pricing, Stochastic Discount Factor, Julia, Monte Carlo Simula-
tions, Feynman-Kac Formula, Zero Coupon Bonds

∗Goethe University Frankfurt & Leibniz Institute for Financial Research SAFE e.V.
website: https://errikos-melissinos.com

1

https://errikos-melissinos.com/pdfs/SDFPricing.pdf
https://errikos-melissinos.com

1 Introduction
The stochastic discount factor (SDF) is a fundamental concept in asset pricing. Given
a joint process for the SDF and a payoff stream, the corresponding security can be
priced. However, there is little software publicly available that is easy to use and
allows the calculation of prices based on an SDF. This paper showcases a package in
the Julia programming language that I developed to answer this need. The package
is called SDFPricing and is available at Github In this first release the package has
limited functionality compared to other projects that are being developed for more
than a decade. Nevertheless, it allows the pricing of zero-coupon fixed income se-
curities, which could then also be combined to price dividend-paying securities. In
addition, it is possible to specify a process for a stochastic dividend stream and cal-
culate the price-dividend ratio, which can then be used to calculate the return of the
security and its price given the current level of the dividend.1 While the pricing can
be made arbitrarily accurate given the processes of the SDF and the dividend stream,
calibration to market data is not directly possible. Therefore, for the time being this
tool will not by itself be useful to price derivatives or any security in a way that is
consistent with other market prices.

I have chosen to develop this package in Julia for two main reasons. Firstly, Julia
being a high-level programming language is easy to use. In addition, its syntax is
similar to Python and MATLAB, which are widely used languages, and it is well
suited for scientific programming. Secondly, Julia includes the DifferentialEquations
package, which is arguably the most comprehensive tool for solving differential equa-
tions, including stochastic differential equations which are at the core of the pricing
problem. Furthermore, there is particular interest in Julia from the finance and eco-
nomics communities. For example, the QuantEcon Organisation is actively engaged
in the language.

The asset pricing package that I introduce is the first within the context of the
Julia programming language. In other programming languages, the Computational
Finance Suite of MATLAB contains resources that can be used for asset pricing, but
unfortunately it requires a license.2 Apart from MATLAB there is also Quantlib
which is a free and open-source C++ library that can be used for asset pricing, while

1For the time being the process of the dividend stream needs to obey a stochastic differential
equation with no jumps.

2Information can be found on the official website https://www.mathworks.com/solutions/
computational-finance/computational-finance-suite.html

2

https://github.com/errikos-melissinos/SDFPricing
https://quantecon.org/
https://www.mathworks.com/solutions/computational-finance/computational-finance-suite.html
https://www.mathworks.com/solutions/computational-finance/computational-finance-suite.html

its functionality can also be leveraged by a dedicated Python library.3 Both Quantlib
and the resources available in Matlab are tools tailored to the industry and they they
do not focus on the pricing of assets starting from a stochastic discount factor. The
aim of my package is to be the go-to resource for those who want to price assets given
an SDF as an “input”.

In Section 2 I describe the package and its functionality. A central function of
the package is solve, which takes a variable of type Problem and a variable of type
SolutionSettings and returns a variable of type Solution, which contains the solution
to the pricing problem described by the inputs. The solution is calculated using
Monte Carlo simulations and the Feynman-Kac formula.

In Section 3 I provide concrete examples of how to use the package along with
the results. I use both consumption-based and non-consumption-based SDFs. I use
SDFs that depend both on one state variable and two state variables, and I compute,
zero-coupon bond prices, price-consumption ratios, and returns of dividend-paying
securities.

In Section 4 I perform an application using the functionality of the package. In
particular, I analyse the effect of general monetary policy shocks on interest rates
and asset prices in the context of a simple consumption-based model. This analysis
is motivated by the literature on Delphic and Odyssean shocks (Campbell, Evans,
Fisher and Lustiniano 2012; Nakamura and Steinsson 2018; Jarociński and Karadi
2020; Andrade and Ferroni 2021; Altavilla, Brugnolini, Gürkaynak, Motto and Ra-
gusa 2019), which are a classification of monetary policy surprises (Gürkaynak, Sack
and Swansonc 2005; Kuttner 2001). Both kinds of shocks are caused by actions or
announcements of central banks. However, Delphic shocks reveal information about
the underlying state of the economy. In contrast, Odyssean shocks reveal information
about the future conduct of monetary policy.4 In the literature the type of shock is
identified depending on how financial variables react after the monetary policy an-
nouncement. Using a simple consumption-based setup I analyse the possible reactions
of interest rates and asset prices to monetary policy announcements. Importantly,
monetary policy may not operate through one channel only. While a traditional

3Information can be found on the official website https://www.quantlib.org.
4The term Odyssean is due to the central bank committing to a future policy beforehand, as

Odysseus did when he tied himself to the mast of his ship to avoid the Sirens. Originally, in Campbell
et al. (2012) the emphasis was placed on whether the central bank is actually committed to the future
policy or not. In subsequent literature the emphasis for the distinction between the two kinds of
shocks was placed more on whether the shocks reveal important information about monetary policy
actions as opposed to underlying macroeconomic conditions. In this papers Delphic shocks are
identified with information shocks and Odyssean shocks are identified with monetary policy shocks.

3

https://www.quantlib.org

monetary policy shock can be justified within a simple consumption-based model, my
analysis shows that if monetary policy can also affect consumption volatility, then the
response of financial variables can be much more unpredictable and it can give rise to
movements in the short-term rate and in asset prices that are usually associated with
an information shock. In addition, information shocks may also induce the effects
that are associated with a standard monetary policy shock. In particular, this can
happen, if the central bank reveals the kind of information about the consumption
process that is usually assumed to caused by a standard monetary policy shock. These
results suggest that accurate theoretical models may be required for the classification
of monetary policy shocks.

Finally, Section 5 concludes.

2 Package Description
In the following description I assume a single state variable and a single Wiener
process for simplicity of the formulas. However, it is also possible to have several
state variables and several Wiener processes. The corresponding formulas are given
in Appendix A.

2.1 Theory

2.1.1 Zero Coupon Bond

Following Cochrane (2009) the pricing equation for an asset that pays no dividends
in continuous time can be written as:

E
[
d
(
ΛQ(xt, t,m)

)]
= 0, Q(xt, t, 0) = g(t, xt) (1)

where m is the remaining maturity until the payoff is due, g(·) is a function for the
terminal payoff for each time t, which can also depend on the state variable, but
which typically is just equal to 1, Λ is the SDF and Q is the price function of the
asset in terms of the state variables, current time and the remaining maturity of the
asset. If the process for the SDF and the state variables is known, then this equation
can be solved to derive the price function Q(xt, t,m) for any value of x, t, and m.5 In

5Here, I show the dependence on time explicitly. Often it will be the case that there will be no
dependence on time and the state variable and remaining maturity will be sufficient to determine
the price of assets. The case without explicit time dependence is also easier to compute with the
package.

4

particular, the state variables follow some process that can be written in stochastic
differential equation (SDE) form as:

dx = µ(xt, t)dt+ σ(xt, t)dWt (2)

where µ is the drift of the state variable, σ is the diffusion of the state variable, and
Wt is the Wiener process. The process for the SDF can be written in SDE form as:

dΛ

Λ
= µΛ(xt, t)dt+ σΛ(xt, t)dWt (3)

Next, using Ito’s Lemma, it is possible to express the SDE that the price function Q

follows. This is given by:

dQ =

(
∂Q

∂t
− ∂Q

∂m
+ µ(xt, t)

∂Q

∂xt

+
1

2
σ(xt, t)

2∂
2Q

∂x2
t

)
dt+ σ(xt, t)

∂Q

∂xt

dWt (4)

where I have dropped the dependence of Q on the arguments for simplicity, and I have
used that dm = −dt. This expression can now be inserted in Equation (1) to derive
the pricing partial differential equation (SDE) that the price function Q follows:

E

[
d
(
ΛQ
)

Λ

]
= 0 ⇒ E

[
dΛ

Λ
Q+ dQ+

dΛ

Λ
dQ

]
= 0 (5)

⇒− r(xt, t)Q+
∂Q

∂t
− ∂Q

∂m
+ µ(xt, t)

∂Q

∂xt

+
1

2
σ(xt, t)

2∂
2Q

∂x2
t

+ σ(xt, t)σΛ
∂Q

∂xt

= 0

where r(xt, t) = −E[dΛ/Λ] is the risk-free rate. This PDE can be solved using the
Feynman-Kac formula, which states that the solution to the PDE is given by the
expected value of the terminal payoff of the asset under the risk-neutral measure.
This is given by:

Q(xt, t,m) = E

[
exp

(
−
∫ t+m

t

r(x̂s, s)ds

)
g(t+m, x̂t+m)

∣∣∣∣∣x̂t = xt

]
(6)

where x̂ follows the modified process:

dx̂t =

(
µ(x̂t, t) + ρcxσ(x̂t, t)σΛ

)
dt+ σ(x̂t, t)dWt (7)

5

This process has a modified process compared to the original process for the state
variable. If the modification is equal to zero then the process for the state variable
is the same as the original process, which implies that prices are set by risk-neutral
investors (or equivalent to risk-neutral investors). If the modification is not equal to
zero then there is a risk premium or a risk discount. By Monte Carlo simulations
of the modified process in Equation (7), it is possible to compute the expectation
in Equation (6), which gives the value of the zero-coupon bond. This allows to also
derive the instantaneous return on bonds (dQ/Q), which follows directly from Ito’s
Lemma as shown in Equation (4).

Finally, if the zero-coupon bond price is integrated up to infinity then this gives
rise to the price of a perpetuity:

Z(xt, t) ≡
∫ ∞

t

Q(xt, t, s)ds (8)

2.1.2 Price-Dividend Ratio

Based on the zero-coupon bonds it is also possible to derive the price-dividend ratio
of a dividend-paying security. In particular, if at time t the price of the security is Ut

and the dividend stream is Dt, then the price-dividend ratio is defined as:6

ut(Xt) ≡
Ut

Dt

(9)

Where Dt follows the process:

dDt

Dt

= µD(xt, t)dt+ σD(xt, t)dWDt (10)

In order, to show the connection to zero-coupon bonds, I also define the dividend
strip Yt(T), which pays an amount equal to the dividend of the security only at a
specific time T (Yt(0) = Dt). Then the strip price ratios are:

yt(m) ≡ Yt(m)

Dt

, yt(0) ≡ 1 (11)

By definition the price of the dividend paying security is the sum of the prices of the
dividend strips:

Ut =

∫ ∞

0

Yt(s)ds (12)

6Given the homotheticity of preferences, the price-dividend and price-consumption ratios are
only functions of the state variable.

6

The price-dividend ratio of the dividend paying security is then:7

Ut

Dt

≡ ut =

∫ ∞

0

Yt(s)

Dt

ds =

∫ ∞

0

yt(s)ds (13)

Given this setup we can again apply Equation (1) as before:8

E
[
d
(
ΛY (xt, t,m)

)]
= 0 ∀t ∈ (t0, T), Y (x, t, 0) = g(t) ∀x (14)

This can then be expressed in terms of the ratio yt as (where I stop showing the
explicit dependence on the arguments for simplicity):9

E
[
d
(
ΛytDt

)]
= 0

⇒E

[
dΛ

Λ
y + dy +

dD

Dt

y +
dΛ

Λ
dy +

dΛ

Λ

dD

D
y +

dD

D
dy

]
= 0 (15)

In addition, Ito’s lemma also applies to the price-dividend ratio, giving rise to an
expression similar to Equation (4):

dyt =

(
∂yt
∂t

− ∂yt
∂m

+ µ(xt, t)
∂yt
∂xt

+
1

2
σ(xt, t)

2∂
2yt
∂x2

t

)
dt+ σ(xt, t)

∂yt
∂xt

dWxt (16)

By inserting the expressions for yt (Equation 16), Dt (Equation 10), and Λt (Equation
3) into Equation (15) we get:

− r(xt, t)yt +
∂yt
∂t

− ∂yt
∂m

+ µ(xt, t)
∂yt
∂xt

+
1

2
σ(xt, t)

2∂
2yt
∂x2

t

+ µD(xt, t)yt

+ ρcxσ(xt, t)σΛ
∂yt
∂xt

+ ρcDσD(xt, t)σΛyt + ρxDσD(xt, t)σ(xt, t)
∂yt
∂xt

= 0 (17)

which is similar to Equation (5) but with additional terms that depend on the dividend
process. This PDE can also be solved using the Feynman-Kac formula:

yt(xt, t,m) = E

[
exp

(
−
∫ t+m

t

r̃(x̃s, s)ds

)
g(t+m)

∣∣∣∣∣x̃t = xt

]
(18)

7A similar expression for discrete time is given in Wachter (2006).
8Now, I have adapted the notation as the price of the strip depends on the state variable and

time explicitly.
9The derivation here is similar to Chen, Cosimano and Himonas (2010)

7

where
r̃(xt, t) = r(xt, t)− µD(xt, t)− ρcDσD(xt, t)σΛ (19)

is adjusted due to the extra terms coming from the dividend stream. And the process
for the modified state variable is given by:

dx̃it =
(
σ(x̃it, t)(ρcxσΛ + ρxDσD) + µ(x̃t, t)

)
dt+ σ(x̃t, t)dWxt (20)

Using the ratios of the prices of the dividend strips over the current dividend for each
maturity it is possible to integrate over all maturities to get the price-dividend ratio
of the dividend-paying security as shown in Equation (13).

Finally, the return of the dividend-paying security can be computed:

dUt

Ut

+
Dt

Ut

dt =
d(utDt)

utDt

+
1

ut

dt =
dut

ut

+
dDt

Dt

+
dutdDt

utDt

+
1

ut

dt

=
1

ut

((
∂ut

∂t
+ µ(xt, t)

∂ut

dxt

+
1

2
σ(xt, t)

2∂
2u

∂x2
+ µD(xt, t)ut +

1

2
σD(xt, t)σ

∂ut

∂xt

+ 1

)
dt

+

(
σ(xt, t)

∂ut

∂xt

+ σD(xt, t)

)
dWt

)
(21)

Where Ito’s Lemma has been applied to ut.

2.2 Implementation

The implementation of the package follows closely the logic of the Feynman-Kac
formula. In order to get the price of a zero-coupon security, the modified state
variable(s) needs to be simulated and the values of these simulations are used to
simulate the stochastic integral of the corresponding short rate.10 The user needs to
specify formulas for the drift and diffusion of the state variables, while the for the
stochastic the r function needs to be given as a drift and 0 should be given as the
diffusion. Each simulation of the stochastic integral is expressed as:11

Ii ≈ −
∫ t+m

t

r(x̂s)︸ ︷︷ ︸
drift for simulation

ds, i = 1, 2, . . . , Ns (22)

10In the case of the continuous payoff security the modified short rate should be given by the
user as defined in Equation 19.

11The simulation of the following integral is handled internally by the StochasticDiffEq.jl package,
as is the simulation of the state variables.

8

where Ns is the number of simulations used. Given a large number of samples the
price of the security is approximated by:

Q(xt, t,m) = E

[
exp

(
−
∫ t+m

t

r(x̂s)ds

)]
g(t+m,xt+m) ≈

1

Ns

Ns∑
i=1

exp
(
Ii

)
g(t+m,xt+m)

(23)
This becomes a good approximation for a large enough number of simulations.

The main function of the package, which performs the computation above is solve
which takes as input a variable of type Problem and a variable of type SolutionSettings.
It then returns a variable of type Solution. The Problem type contains the information
for the drift and the diffusion of the processes to be simulated, it also contains the
terminal function for the payoff (typically just equal to one at maturity). The drift
and diffusion functions for the processes that are meant to be simulated are given
as they would be for the standard DifferentialEquations package in Julia.12. The
SolutionSettings type contains information that is necessary for the solution of the
problem, such as the grid for the state variable, the number of simulations to be
performed, and the algorithm to be used for the simulations.13 This type can also be
given a specification that a continuous payoff variable is being simulated. In this case,
prices of dividend strips are computed14 and they are then also integrated to give the
price-dividend ratio. Finally, the Solution type returns the result of the computation
that can be called as a normal function. This means that it can be called with specific
arguments for time and the state variable(s) to return the price of the zero-coupon
security or the price-dividend ratio of the dividend-paying security, if a continuous
payoff specification is given.15

Finally, a convenience function is also given to compute the derivatives of the price-
dividend ratio with respect to the state variable. This can facilitate the computation
of the return of the dividend-paying security as shown in Equation (21).16

A more detailed technical description of the package is provided in Appendix ref
??, while the following examples illustrate how the package can be used.

12Or the more specialised package StochDiffEq.jl for stochastic differential equations.
13The algorithm is one of the algorithms offered in the standard DifferentialEquations.jl package.

More information can be found in the documentation page.
14From the point of view of the code these are exactly the same as zero-coupon securities. The

difference should be in the drift of the given process, that should be modified as specified in 13.
15The Solution type is further subdivided into SinglePayoffSolution and ContinuousPayoffSolu-

tion.
16At the point of writing this function can only applies when the problem has one state variable.

9

https://docs.sciml.ai/DiffEqDocs/stable/solvers/sde_solve/

3 Examples

3.1 One State Variable

3.1.1 Time-Varying Consumption Drift – Zero-Coupon Security

While the package can be used with any process for theSDF, the examples in this
paper are from the context of a consumption-based model, in which the investor has
CRRA utility. The specific code and all the results for the examples are shown in
Jupyter notebooks that are included in Appendix C.17 The consumption process is
exogenous and given by:

d logCt = dct = µc(xt)dt+ σcdWt, µc(xt) = µc0 + xt (24)

By Ito’s Lemma and the fact that Λ = e−ρtC−γ the process for the SDF is given by:

dΛ

Λ
=
(
− ρ− γµc(xt) +

1

2
γ2σ2

c

)
dt− γσcdWt (25)

And this also provides the function for the short rate:

r(xt) = −E

[
dΛ

Λ

]
1

dt
= ρ+ γµc(xt)−

1

2
γ2σ2

c (26)

The process for the state variable is given by:

dx = − log ϕ(x̄− xt)dt+ σxdWt (27)

where x̄ is the point at which the process has a drift of zero, which I also call the
stochastic steady state. So, based on Equation (7), the process for the modified state
variable is:

dx̂ =
(
− log ϕ(x̄− x̂t)− γρcxσxσc

)
︸ ︷︷ ︸

drift for simulation

dt+ σx︸︷︷︸
diffusion for simulation

dWt (28)

Apart from computing the regular price of the zero-coupon bond, I also compute the
price of the risk-neutral zero-coupon bond. In this case I simulate the unmodified
state variable of the problem. Then the term premium can be computed as the
difference between the yield and the risk-neutral yield. As can be seen in the results,

17These examples are also included as part of the code of the package to facilitate users.

10

the term structure can be either upward or downward-sloping (positive or negative
yield spread), depending on the value of the state variable. This is because the state
variable is expected to revert to the stochastic steady state. So, long-term yields
which are in some respect combinations of expected future short-rates are higher
(lower) compared to short-term yields, when short rates are expected to increase
(decrease). In addition, within this stylised model, even though consumption drift is
significantly variable, the term premium is negative and tiny.

3.1.2 Time-Varying Consumption Diffusion - Zero-Coupon Security

In this example, instead of having a time-varying consumption drift as in the previous
example, I have a time-varying consumption diffusion. The consumption process is
given by:

d logCt = dct = µcdt+ σc(xt)dWt, σc(xt) =

 2σc0

1+exp(−2x)
if x < 0

4σc0

1+exp(−x)
− 1 otherwise

(29)

while the state variable follows the same process as in the previous example. The
process could have also followed a CIR process and then be used as the consumption
diffusion. This would also ensure that the consumption diffusion is positive. However,
I use this relatively different process to show that the package can handle processes
that are non-affine in terms of the state variable. In addition, I avoid using a simple
exponential that would ensure the positivity of the consumption diffusion, because the
exponential can increase too fast and make the some paths unstable. The functional
form above ensures that the consumption diffusion is bounded between 0 and 3σc0,
where σc0 is the value at the stochastic steady state. The modified state is then given
by:

dx̂ =
(
− log ϕ(x̄− x̂t)− γρcxσxσc(x̂t)

)
dt+ σxdWct (30)

As can be seen in the results, the short term rate is slightly decreasing with con-
sumption volatility due to the precautionary savings motive of agents and the term
premium is negative and also very small.

3.1.3 Time-Varying Consumption Drift - Dividend-Paying Security

In this example, I show how the package can be used to compute the price-dividend
ratio of a dividend-paying security for the same consumption process as in the first
example. In general, it is possible for the dividend to follow any process. However,

11

here I assume that the dividend process follows the same process as the consumption
process. In this case the price-dividend ratio is called price-consumption ratio, and
dividend strips are called consumption strips. Here, the modified process is not the
same as in the case with a zero-coupon bond. Following Equation (20) the modified
process is given by:

dx̃ =
(
− log ϕ(x̄− x̃t)− (γ − 1)ρcxσxσc

)
︸ ︷︷ ︸

drift for simulation

dt+ σx︸︷︷︸
diffusion for simulation

dWct (31)

Unlike the case of the zero-coupon bond for the consumption strip the short rate
function that is used in the simulation is also modified. So, following Equation (19)
the modified short rate is given by:

r̃(x̃t, t) = ρ+ γµc(x̃t)−
1

2
γ2σ2

c − µc(x̃t) + γσ2
c (32)

The results show that when consumption drift is significantly varying the price of
the consumption perpetuity is significantly volatile. In addition, it is possible to use
the resulting price-consumption ratio calculate its derivatives and then use these to
get the return of the security as a function of the state variable.18 The return of
the security is very close to the short term rate verifying the idea behind the equity
premium puzzle. In particular, this model would predict a very small equity premium,
which is not consistent with the data.

3.1.4 Time-Varying Consumption Diffusion - Dividend-Paying Security

The dividend paying security can also be computed when consumption diffusion is
time-varying. Again I assume that the dividend is following the same process as
consumption. So, the modified process for the state variable is given by:

r̃(x̃t, t) = ρ+ γµc −
1

2
γ2σc(xt)

2 − µc + γσc(xt)
2 (33)

Interestingly for γ = 2 the function above becomes a constant which makes the price-
consumption ratio also a constant. This implies that holding consumption constant
and changing consumption volatility actually has no effect on prices and returns.
However, the short rate is still a decreasing function of consumption volatility so the
premium is increasing in the consumption diffusion.

18Here, the derivatives work best when the solution is computed based on an interpolation func-
tion that is calculated based on the DataInterpolations package.

12

3.2 Two State Variables

Finally, the package also works with more than one state variables. In this example,
I allow consumption drift and consumption diffusion to vary independently. So, the
consumption process is given by:

dct = µc(x1t)dt+σc(x2t)
(
1−|ρcx1|−|ρcx2|

)
dWc1t+ρcx1σc(x1t)dWx1t+ρcx2σc(x2t)dWx2t

(34)
Where µc(·) and σc(·) are the same as in Subsections 3.1.1 and 3.1.2 respectively. And
the processes of the state variables are given by:

dx1t = − log ϕ1(x̄1 − x1t)dt+ σx1
1

1 + ρ12
dWx1t + σx1

ρ12
1 + ρ12

dWx2t

dx2t = − log ϕ2(x̄2 − x2t)dt+ σx2
ρ21

1 + ρ21
dWx1t + σx1

ρ21
1 + ρ21

dWx2t (35)

Wct, Wx1t, and Wx2t are independent Wiener processes, but based on the structure
above the correlations between the various components are:

E[dctdx1t] =

(
ρcx1

1

1 + ρ12
+ ρcx2

ρ12
1 + ρ12

)
σc(x2t)σx1dt ≊ ρcx1σcσx1dt

E[dctdx2t] =

(
ρcx2

1

1 + ρ21
+ ρcx1

ρ21
1 + ρ21

)
σc(x2t)σx2dt ≊ ρcx2σc(x2t)σx2dt

E[dx1tdx2t] = σx1σx2
ρ21 + ρ12

1 + ρ12 + ρ21 + ρ12ρ21
dt ≊ (ρ12 + ρ21)σx1σx2dt (36)

with the approximate equalities being valid when ρ12 and ρ21 are small. The benefit
of this setup is that consumption diffusion is equal to σc(x̂2t), the diffusion of the state
variables is close to σx1 and σx2, when ρ12 and ρ21 are small, and a correlation structure
can still be maintained between the consumption process and the state variables
by an appropriate choice of parameters ρcx1, ρcx2, ρ12, and ρ21. For example, a
negative correlation between consumption and consumption diffusion can be specified
by letting ρcx2 be negative, or a correlation between the two state variables can be
specified without introducing correlation with consumption by letting ρ12 and ρ21 be
different from zero. Similar to above the modified process is given by:

dx̂1t =
(
− log ϕ1 · (x̄1 − x̂1t) + ρcx1σc(xt)σx1

)
dt+ σx1

1

1 + ρ12
dWx1t + σx1

ρ12
1 + ρ12

dWx2t

dx̂2t =
(
− log ϕ2 · (x̄2 − x̂2t) + ρcx2σc(xt)σx2

)
dt+ σx2

ρ21
1 + ρ21

dWx1t + σx2
1

1 + ρ21
dWx2t

(37)

13

Finally, the short rate is unmodified and a function of two variables:

r(x1t, x2t) = −E

[
dΛ

Λ

]
1

dt
= ρ+ γµc(x1t)−

1

2
γ2σc(x2t)

2 (38)

Seen as a function of one state variable at a time the results are not significantly
different compared to the examples before. However, the two-variable model can be
used to show further moments including cross moments between different financial
variables.

4 Application
The package allows the computation of asset prices in response to changes in the
state variable and/or in consumption. As also mentioned in the introduction, the
literature has focused on two kinds of shocks, Delphic and Odyssean. Delphic shocks
reveal information about the underlying state of the economy, and Odyssean shocks
introduce an unexpected monetary policy. Performing an analysis in the context of
a consumption-based model highlights the fact that interest rates and asset prices
ultimately only move when some component of the SDF changes (or is perceived
to change). This holds regardless whether the central bank is revealing information
or whether it is committing to a different monetary policy. In addition, the analysis
highlights the importance of the channel through which monetary policy is conducted.
For example, a standard monetary tightening is supposed to decrease output and
this increases expected output growth as the economy is expected to revert to the
steady state. This implies that the real short-term rate increases to counteract the
increased consumption smoothing motive, and asset prices fall due to the higher
discount rate. This literature makes the assumption that on the day of a monetary
policy announcement the announcement itself is causing the changes in asset prices
and not vice versa. And while this is reasonable and in most cases should be true,
the observation of an increase in interest rates and a decrease in asset prices does not
necessarily imply that the central bank has caused this effect by tightening monetary
policy, if the central bank could just be revealing information. Indeed the central bank
could be directly revealing that output growth has increased for other reasons (in the
same way that it would have increased had the actual monetary policy changed),
and this by definition should produce exactly the same response of interest rates and
asset prices. So, even when we observe the “correct” pattern for monetary policy we
cannot exclude the possibility of a Delphic/information shock.

14

Still one could claim that when the “wrong” pattern occurs, then it is due to a
Delphic shock. However even in this case, monetary policy could be affecting the
economy through different channels, even before the episodes of explicitly uncon-
ventional monetary policy. In this section I explore the behaviour of asset prices
under when different components of the SDF change, and my results suggest that,
whatever the pattern, it is not trivial to classify as Odyssean/monetary shocks and
Delphic/information shocks. I analyse two main cases, in the first the state variable
is consumption drift and in the second it is consumption diffusion. One could ask
whether monetary policy can affect consumption diffusion. And while this channel
is less standard, such a relationship can find support in at least two different strands
of literature. Firstly, there is literature suggesting the importance of the “risk-taking
channel” of monetary policy (Borio and Zhu 2012; Adrian and Shin 2010), and such
a channel could be modelled as affecting consumption diffusion in the context of a
consumption-based model.19 Secondly, Vayanos and Vila (2021) has also suggested
that the term structure of interest rates is driven by arbitrageurs taking on more or
less risk. In their model, this would directly translate to more or less wealth volatility,
which can be naturally modelled as consumption volatility within a model that has
exogenous consumption.20

In the following cases that I examine, I will compare my results to the classification
of monetary policy announcements in Jarociński and Karadi (2020) (JK) and Cieslak
and Schrimpf (2019) (CS), which I summarize in Table 1. In JK the co-movement
of stock prices with the short-term rate is exclusively considered as a criterion to
classify shocks into pure monetary policy shocks and information shocks. In the case
of CS the yields of long-term bonds are also considered, and essentially the difference
is that information shocks are sub-categorised into “growth” and “risk premium”
shocks, in the former (latter) short-term (long-term) yields react more aggressively
than long-term (short-term) yields. The calibration for both cases is shown in Table

19A different approach within a consumption-based model would be to assume that the risk
aversion parameter itself can stochastically change as in Lettau and Wachter (2011).

20In the original model there is no consumption and arbitrageurs are just optimising the mean
and variance of their portfolio value. In particular, arbitrageurs are rather not associated with
real consumers but with financial institutions. Here, I use a model with consumption without any
explicit wealth, but this could be thought of as modelling either the behaviour of real consumers or
the behaviour of financial institutions that use the a consumption-based SDF. While Vayanos and
Vila (2021) is mostly associated with the conduct of unconventional monetary policy, it suggests
a more general explanation of the term structure. So, assuming that monetary policy has played
an important role in shaping the term structure of interest rates even before the introduction of
unconventional monetary policies, it is arguable that arbitrageurs would be adjusting their levels of
risk even before the introduction of unconventional monetary policies.

15

2.

Shock Yields Stocks Stock-Yield

short long Co-movement

Jarociński and
Karadi (2020)

Monetary policy: ↑ - ↓ -

Information: ↑ - ↑ +

Cieslak and
Schrimpf (2019)

Monetary policy: ↑ ↑ ↓ -

Growth: ↑ ↑ ↑ +

Risk premium: ↓ ↓ ↓ +

Table 1: This table is partly taken from a corresponding table in Cieslak and Schrimpf
(2019), to which I have added the classification in Jarociński and Karadi (2020). In the
latter paper the authors do not use long-term yields in the classification and they do
not compare the size of the movements. The former paper uses both kinds of yields and
compares the size of the movements. This is expressed through the size of the arrows
in the table.

4.1 Case 1: Time-Varying Consumption Drift

In the first case that I analyse, the underlying model has a time-varying consumption
drift. And the central bank is also able to “externally” affect the variables in the
model. I assume that this takes place without adding an extra state variable.21 So,
the processes evolve according to:

dxt = − log ϕ(xt − xt)dt+ σxdWxt +Mxdqt

dct = (µc0 + xt)dt+ σcdWt +Mcdqt (39)

Where dqt is a Poisson shock assumed to be activated when the monetary policy
announcement occurs. Mx and Mc express the size of the effect on the state variable
and consumption respectively.22 I focus on the effect of the effect of the shock on

21Technically, the monetary policy variable should also have a distribution. However, for the
stylized model I use here, I just assume that monetary policy can affect the economy in an unantici-
pated way. A different approach would be to introduce monetary policy as a separate state variable
or assume that the state variable is already equivalent to monetary policy. The results would not
be significantly different.

22For mathematical consistency with the rest of the model, as also mentioned in the previous
footnote, dqt should have 0 intensity, which implies that the probability of such a change is equal to
0.

16

Model

Parameter Time-varying
consumption
drift

Time-varying
consumption
diffusion

γ 1/2 1/2/2.5

ϕ 0.82 0.82

x̄ 0.0 0.0

ρ 0.02 0.02

µc0 0.01 -

µc state variable 0.01

σc0 - 0.06

σc 0.01 state variable

σx 0.005 0.5

ρcx 0.3 0.3

Table 2: Calibration for the two cases

yields and on an asset that pays dividends equal to consumption. I call this asset
consumption perpetuity.

If the announcement only affects the current level of consumption (Mx = 0,Mc ̸=
0), then the short-term rate is unaffected, the price consumption ratio is unaffected,
but the price of the consumption perpetuity undergoes a level shift that persists in
time.23 This is because there is only one state variable in the model other than
consumption, which by itself does not affect prices and the price-consumption ratios.
In addition, the jump in consumption does not dissipate given the process chosen
for consumption, which explains the persistence of the effect on the price of the
consumption perpetuity. In a more realistic case in which the announcement affects
both variables (Mx > 0,Mc < 0) the results are shown in Figure 1. For both risk
aversion values the short-term rate increases, while longer-term yields increase also
but less with maturity due to the mean reversion of the steady state. In addition, in
both cases there is no significant change in the equity premium. While this change

23When discussing how monetary policy announcements affect variables, this could be taking
place either by monetary policy literally affecting the variable or by revealing information and
making investors aware that a variable has some value. For simplicity I do not explicitly and
separately model perceived and real variables.

17

Figure 1: Impulse Responses to Consumption Drift Shock
These are responses after a consumption drift change. The period shown is ten years.
The size of the shock corresponds to one standard deviation. I interpret these responses
as taking place after a monetary policy announcement, and I assess to which type of
shock they correspond. The short-term rate increases, but the response of the asset
price is different depending on the risk aversion parameter.
*Plots normally show percent deviation from the stochastic steady state. Plots with
starred variables show percent relative deviations from the stochastic steady state.

18

look more like a traditional monetary policy shock, it turns out that for the special
case of γ = 1 the price-consumption ratio is constant as the higher discounting exactly
offsets the higher expected dividends. The price of the asset still undergoes a level
increase due to the increase in the dividends, which do not revert to the previous
level. When γ = 2.0 the traditional pattern of monetary policy arises, in which the
short rate goes up and the asset price goes down, with both effects subsequently dying
out.24 This is consistent with the monetary policy classification in both JK and CS.
Nevertheless, these results highlight that ultimately the effects occur in connection
to a shift in the consumption drift. So, if the central bank can affect the economy
through an information channel, then the shift could be caused or alternatively it
could be revealed by the central bank. Therefore, even in this conventional monetary
policy case, a method is required to distinguish between the two alternatives.

4.2 Case 2: Time-Varying Consumption Diffusion

For the second case, I work on the model with time-varying consumption diffusion.
Again I focus on yields and on the consumption perpetuity. Here the processes evolve
according to:

dxt = − log ϕ(xt − xt)dt+ σxdWxt +Mxdqt

dct = µcdt+ σc(xt)dWt +Mcdqt (40)

with σc defined in Equation (29). The case where only consumption increases are
the same as were discussed before. The effect of the monetary policy announcement
affecting an increase in consumption volatility (Mx > 0,Mc = 0) is shown in Figure
2. Here, I use a higher average consumption volatility compared to the previous case,
in order for consumption volatility changes to have a significant effect on the short
rate and on returns. I also use a positive correlation between consumption volatility
changes and consumption changes as was primarily done in Melissinos (2023).25 For
all three values of the risk aversion parameter (γ = 1.0, 2.0.2.5), the short-term rate
decreases albeit with different intensity. This would be associated with an easing of

24Even in this case though there is a lasting residual effect on the price of the dividend-paying
security that is due to the increase of the dividend which in this model does not revert to the previous
level. There is also a tiny increase in the equity premium, significantly less than 0.01%, as the equity
premium depends on the state variable, but only very slightly given that consumption volatility is
constant.

25For this analysis using negative correlation would produce practically the same impulse response
functions.

19

monetary policy. In addition, despite consumption volatility and the equity premium
rising considerably in all three cases, the shock is never classified as a risk premium
shock of CS because long-term yields react less than short-term yields. This is due
to the reversion of the state variable to the steady state, which implies that over the
long run, the state variable should revert to its previous value. In addition, consistent
with an information shock in JK and a growth shock in CS the price of the asset
decreases when γ = 1.0 when the short-term rate also decreases.26 Interestingly,
this has nothing to do with a growth shock conceptually as by construction only
consumption volatility is affected. On the contrary, the case of a growth shock (shift
in consumption drift) was analysed in the previous subsection, and it had the effect of
a monetary policy shock according to the classifications. Furthermore, there are two
more cases for the risk aversion parameter that would imply a different classification.
For γ = 2.0 the price of the asset remains constant, which is an alternative not
considered by JK or CS. For γ = 2.5 the price of the asset increases, when the short-
term rate decreases. So, this would actually be classified as a normal monetary policy
shock both by JK and CS. The model variations analysed here are highly stylised,
but the results are nevertheless suggestive. If monetary policy is inducing investors
to take on more risk, by moving the interest rate, then the effect on asset prices
may depend on the value of the risk aversion parameter of the investors who are
responsible for pricing the assets. And there are some cases, in which, unlike what
is assumed in most classifications of monetary policy shocks, the central bank causes
the short-term rate and asset prices to move in the same direction.

5 Conclusion
The primary goal of this paper is to introduce and explain a Julia package that is
able to facilitate asset pricing in settings in which the process of the SDF is known.
The package takes advantage of the already available DifferentialEquations.jl package,
that is used to simulate SDEs. The package can then generate price functions for fixed
income securities. In addition, the price-dividend ratio of dividend-paying securities
can also be computed, as long as the joint processes of the SDF and the dividend are
given. The package can handle single-variable and multi-variable problems for both
fixed income and dividend-paying securities. In the case of single-variable problems
the package also facilitates the calculation of the expected return. I illustrate the use
of the package in fully worked out examples that have been explained in the paper

26This is also consistent with a corresponding result in Bansal and Yaron (2004).

20

Figure 2: Impulse Responses to Consumption Diffusion Shock
These are responses after a consumption diffusion change. The period shown is ten
years. The size of the shock corresponds to one standard deviation. I interpret these
responses as taking place after a monetary policy announcement, and I assess to which
type of shock they correspond. The short-term rate and the expected excess return
(equity premium) always fall, but the response of the asset price is different depending
on the risk aversion parameter.
*Plots normally show percent deviation from the stochastic steady state. Plots with
starred variables show percent relative deviations from the stochastic steady state.

21

and whose code is included in the Appendix.27 The examples include consumption-
based models in which the consumption process is exogenous and generates an SDF
process. In the examples both one and two state variables are used.

The package is suited for academic research, and I illustrate this with an appli-
cation, in which I study the possible effects of monetary policy announcements on
interest rates and asset prices. While several papers have performed classification of
monetary policy announcements, based on responses of financial markets, few provide
an explicit theory that shows how these effects are channeled.28 In general higher in-
terest rates are associated with higher discounting and hence lower asset prices, but
if monetary policy increases interest rates via a channel that also increases dividend
flows, it becomes non-trivial whether asset prices should increase or decrease. In
addition, if monetary policy runs through a risk-taking channel the effects on asset
prices can again be ambiguous. My results highlight two things. Firstly, once it is
accepted that the central bank can affect the economy by revealing information about
the state of the economy, then it becomes difficult to identify a pure monetary policy
shock even if financial variables follow the anticipated pattern. Secondly, given un-
conventional monetary policy or to the extent that monetary policy does not operate
through the traditional channel, it is possible that “tightening” (“easing”) does not
necessarily lead to a decrease (increase) in asset prices. This suggests that the iden-
tification of information shocks should also be accompanied by specific theory that
outlines the potential channels of monetary policy.

In the future, I am planning to extend the functionality of the package. In par-
ticular, as first steps I am planning to a) add the possibility of discrete jumps of the
relevant variables, b) include specialised functions to compute the prices of special
payoff structures that correspond to different known financial securities, and c) fa-
cilitate the choice of underlying solution algorithms, in order to strike the desired
balance between speed and accuracy for each kind of problem. Next, functions can
be added for the calibration and/or estimation of models to macroeconomic and/or
financial data.

27The examples are also included in the Github page for the package.
28An exception is Cieslak and Schrimpf (2019), who included a non-consumption-based macro-

finance model.

22

https://github.com/errikos-melissinos/SDFPricing

References
Adrian, T. and Shin, H. S. (2010). Financial intermediaries and monetary eco-

nomics. In Handbook of monetary economics, vol. 3, Elsevier, pp. 601–650.

Altavilla, C., Brugnolini, L., Gürkaynak, R. S., Motto, R. and Ragusa,
G. (2019). Measuring euro area monetary policy. Journal of Monetary Economics,
108, 162–179.

Andrade, P. and Ferroni, F. (2021). Delphic and odyssean monetary policy
shocks: Evidence from the euro area. Journal of Monetary Economics, 117, 816–
832.

Bansal, R. and Yaron, A. (2004). Risks for the long run: A potential resolution
of asset pricing puzzles. The Journal of Finance, 59 (4), 1481–1509.

Borio, C. and Zhu, H. (2012). Capital regulation, risk-taking and monetary policy:
a missing link in the transmission mechanism? Journal of Financial stability, 8 (4),
236–251.

Campbell, J. R., Evans, C. L., Fisher, L. D. and Lustiniano, A. (2012).
Macroeconomic effects of federal reserve forward guidance. Brookings Papers on
Economic Activity.

Chen, Y., Cosimano, T. F. and Himonas, A. A. (2010). Continuous time one-
dimensional asset-pricing models with analytic price–dividend functions. Economic
theory, 42 (3), 461–503.

Cieslak, A. and Schrimpf, A. (2019). Non-monetary news in central bank com-
munication. Journal of International Economics, 118, 293–315.

Cochrane, J. H. (2009). Asset pricing: Revised edition. Princeton University Press.

Gürkaynak, R. S., Sack, B. and Swansonc, E. T. (2005). Do actions speak
louder than words? the response of asset prices to monetary policy actions and
statements. International Journal of Central Banking.

Jarociński, M. and Karadi, P. (2020). Deconstructing monetary policy
surprises—the role of information shocks. American Economic Journal: Macroeco-
nomics, 12 (2), 1–43.

23

Kuttner, K. N. (2001). Monetary policy surprises and interest rates: Evidence from
the fed funds futures market. Journal of monetary economics, 47 (3), 523–544.

Lettau, M. and Wachter, J. A. (2011). The term structures of equity and interest
rates. Journal of Financial Economics, 101 (1), 90–113.

Melissinos, E. (2023). Real term premia in consumption-based models. Available
at SSRN 4582708.

Nakamura, E. and Steinsson, J. (2018). High-frequency identification of mone-
tary non-neutrality: the information effect. The Quarterly Journal of Economics,
133 (3), 1283–1330.

Vayanos, D. and Vila, J.-L. (2021). A preferred-habitat model of the term struc-
ture of interest rates. Econometrica, 89 (1), 77–112.

Wachter, J. A. (2006). A consumption-based model of the term structure of interest
rates. Journal of Financial Economics, 79 (2), 365–399.

24

A Multivariable formulas
• Equation 2:

dxi = µi(Xt, t)dt+
M∑
j=1

σi,j(Xt, t)dWjt, i = 1, 2, . . . , N, E[dWjtdWk(t)] = ρj,kdt

where Xt = (x1, x2, . . . , xN), µi is the drift of state variable i, Wjt is the j-th
Wiener process, M is the number of Wiener processes, σi,j is the diffusion of
state variable i with respect to Wjt, and ρj,k is the correlation between the jth
and kth Wiener processes.

• Equation 3:
dΛ

Λ
= µΛ(Xt, t)dt+

M∑
j=1

σΛ,j(Xt, t)dWjt

• Equation 4:

dQ =

(
∂Q

∂t
− ∂Q

∂m
+

N∑
i=1

µi(Xt, t)
∂Q

∂xi

+
1

2

N∑
a=1

N∑
b=1

M∑
c=1

M∑
d=1

ρc,dσa,c(Xt, t)σb,d(Xt, t)
∂2Q

∂xa∂xb

)
dt

+
N∑
i=1

M∑
j=1

σi,j(Xt, t)
∂Q

∂xi

dWjt

• Equation 5:

E

[
d
(
ΛQ
)

Λ

]
= 0 ⇒ E

[
dΛ

Λ
Q+ dQ+

dΛ

Λ
dQ

]
= 0

⇒− r(X, t)Q+
∂Q

∂t
− ∂Q

∂m
+

N∑
i=1

µi(Xt, t)
∂Q

∂xi

+
1

2

N∑
a=1

N∑
b=1

M∑
c=1

M∑
d=1

ρc,dσa,c(Xt, t)σb,d(Xt, t)
∂2Q

∂xa∂xb

+
N∑
i=1

M∑
j=1

M∑
k=1

ρj,kσi,j(Xt, t)σΛ,k
∂Q

∂xi

= 0

25

• Equation 6:

Q(Xt, t,m) = E

[
exp

(
−
∫ t+m

t

r(X̂s, s)ds

)
g(t+m)

∣∣∣∣∣X̂t = Xt

]

where X̂ = (x̂1, x̂2, . . . , x̂n).

• Equation 7:

dx̂it =

(M∑
j=1

M∑
k=1

ρj,kσi,j(X̂ t, t)σΛ,k + µi(X̂t, t)

)
dt+

M∑
j=1

σi,j(X̂t, t)dWjt

• Equation 8:
Z(Xt, t) ≡

∫ ∞

t

Q(Xt, t, s)ds

• Equation 9:
ut(Xt) ≡

Ut

Dt(Xt)

• Equation 10:
dDt

Dt

= µD(Xt, t)dt+
M∑
j=1

σD,j(Xt, t)dWjt

• Equation 14:

E
[
d
(
ΛY (Xt, t,m)

)]
= 0 ∀t ∈ (t0, T), Y (X, t, 0) = g(t) ∀X

• Equation 16:

dy =

(
∂y

∂t
− ∂y

∂m
+

N∑
i=1

µi(Xt, t)
∂y

∂xi
+

1

2

N∑
a=1

N∑
b=1

M∑
c=1

M∑
d=1

ρc,dσa,c(Xt, t)σb,d(Xt, t)
∂2y

∂xa∂xb

)
dt

+
N∑
i=1

M∑
j=1

σi,j(Xt, t)
∂y

∂xi
dWjt

26

• Equation 17:

− r(X, t)yt +
∂yt
∂t

− ∂yt
∂m

+
N∑
i=1

µi(Xt, t)
∂yt
∂xi

+
1

2

N∑
a=1

N∑
b=1

M∑
c=1

M∑
d=1

ρc,dσa,c(Xt, t)σb,d(Xt, t)
∂2yt

∂xa∂xb

+ µD(Xt, t)yt +

N∑
i=1

M∑
j=1

M∑
k=1

ρj,kσi,j(Xt, t)σΛ,k
∂yt
∂xi

+

M∑
j=1

M∑
k=1

ρj,kσD,j(Xt, t)σΛ,kyt

+

N∑
i=1

M∑
j=1

M∑
k=1

ρj,kσD,j(Xt, t)σi,j(Xt, t)
∂yt
∂xi

= 0

• Equation 18:

yt(Xt, t,m) = E

[
exp

(
−
∫ t+m

t

r̃(X̃s, s)ds

)
g(t+m)

∣∣∣∣∣X̃ t = Xt

]

• Equation 19:

r̃(Xt, t) = r(Xt, t) + µD(Xt, t) +
M∑
j=1

M∑
k=1

ρj,kσD,j(Xt, t)σΛ,k

• Equation 20:

dx̃ =

(M∑
j=1

M∑
k=1

ρj,kσi,j(Xt, t)(σΛ,k + σD,k) + µi(X̃ t, t)

)
dt+

M∑
j=1

σi,j(X̃ t, t)dWjt

• Equation 21:

dUt

Ut
+

Dt

Ut
dt =

d(utDt)

utDt
+

1

ut
dt =

dut
ut

+
dDt

Dt
+

dutdDt

utDt
+

1

ut
dt

=
1

ut

((
∂ut
∂t

+

N∑
i=1

µi(Xt, t)
∂ut
dxi

+
1

2

N∑
a=1

N∑
b=1

M∑
c=1

M∑
d=1

ρc,dσa,c(Xt, t)σb,d(Xt, t)
∂2u

∂xa∂xb

+
µD(Xt, t)

Dt
ut +

1

2

N∑
i=1

M∑
j=1

M∑
k=1

ρj,kσD,j(Xt, t)σi,k
∂ut
∂xi

)
dt

+

(N∑
i=1

M∑
j=1

σi,j(Xt, t)
∂ut
∂xi

+
M∑
j=1

σD,j(Xt, t)

)
dWjt

)

27

B Documentation

28

Example 1 – One state variable

Time-Varying Consumption Drift – Zero-Coupon Bond

The state variable is associated with the consumption drift. Given a CRRA utility function the SDF
process can be computed, inserted in the pricing equation and then solved using a Feynman-Kac
formula. The modified state variable follows the process:

dx̂t =
(
− log ϕ(x̄− x̂t) + ρcxσcσx

)
dt+ σxdWxt

While the state variable is not modified when there is no correlation between the process for con-
sumption and the process for the state variable:

dxt = − log ϕ(x̄− xt)dt+ σxdWxt

In order to get the price of the zero-coupon security a process for the integral of the short-term rate
will also be needed:

dI = r(x̄t)dt

Import the packages
[1]: import SDFPricing as sdf

import StochasticDiffEq as sde # this is needed in order to specify the algorithm

Define the parameters
[2]: cs = (

phi = 0.92, # mean reversion
xbar = 0.0, # long-run mean
rho = 0.01, # time preference parameter
gamma = 2, # risk aversion
muc0 = 0.005, # mean of consumption drift
sigmac = 0.01, # consumption diffusion
sigmax = 0.005, # state variable diffusion
rhocx = 0.3 # correlation between consumption and state variable

);

Drift and Diffusion of the processes I also include the unmodified process which will corre-
spond to “risk-neutral pricing”. By comparing normal pricing with risk-neutral pricing it is possible
to compute excess returns.

[3]: mu0(x,c) = -log(c.phi)*(c.xbar-x) # drift of unmodified state
sigma(x,c) = c.sigmax; # diffusion of both modified and unmodified state
mu(x,c) = mu0(x,c)-c.rhocx*c.gamma*c.sigmac*sigma(x,c) # drift of modified state

[3]: mu (generic function with 1 method)

C Examples

29

Short-term rate function
[4]: r(x,c) = c.rho+c.gamma*(c.muc0+x)-c.gamma^2*c.sigmac^2/2;

r(x) = r(x,cs); # define with one argument for convenience

Define setup consistent with SDE package in Julia
[5]: function drift(du,u,p,t,c)

du[1] = mu0(u[1],c)
du[2] = mu(u[2],c)
du[3] = r(u[1],c)
du[4] = r(u[2],c)

end
drift(du,u,p,t) = drift(du,u,p,t,cs);
function diffusion(du,u,p,t,c)

du[1] = sigma(u[1],c)
du[2] = sigma(u[2],c)
du[3] = 0.0
du[4] = 0.0

end
diffusion(du,u,p,t) = diffusion(du,u,p,t,cs);

Define the Problem and SolutionSettings variables
[6]: prob = sdf.

↪→Problem(drift=drift,diffusion=diffusion,numNoiseVariables=1,outVariables=[3,4],
terminalFunction=(ik, x, y, z) -> exp(-x));
xRange = -0.05:0.01:0.05;
sett = sdf.SolutionSettings(xRanges=[xRange,], initialValues=[[x, x, 0.0, 0.0]␣
↪→for x in xRange],

algorithm=sde.LambaEM(), pathsPerInitialValue=10000, tRange=0.0:1.0:10.0);

Solve Problem and Define Yield
[7]: ((bondPriceRiskNeutral,bondPrice),) = sdf.solve(prob, sett);

yld(t,x) = -log(bondPrice(t,x))/t;
yldRiskNeutral(t,x) = -log(bondPriceRiskNeutral(t,x))/t;

Plot the yield
[8]: # colors: "#0075d6", "#edad14", "#a3e3ff", "#9c0000"

import Plots as plt
plt.default(titlefont= (14,"Computer Modern"),legendfont=(8,"Computer Modern"),

tickfont=(8,"Computer Modern"),guidefont=(10,"Computer Modern"))
plt.plot(100*xRange, xRange .|> x->100*r(x), title="Yields",

xlabel="consumption drift (%100*)",label="short-term␣
↪→rate",color="#0075d6",ylabel="%")

plt.plot!(100*xRange, 100*yld.(5.0, xRange), label="5-year",color= "#edad14")
plt.plot!(100*xRange, 100*yld.(10.0, xRange), label="10-year",color="#a3e3ff")

[8]:

30

Plot the term premium
[9]: plt.plot(xRange, 100*(yld.(5.0, xRange) .- yldRiskNeutral.(5.0,␣

↪→xRange)),title="Term Premia",
xlabel="consumption drift (%)",label="5-year",ylims=(-0.005,0.

↪→005),color="#0075d6",ylabel="%")
plt.plot!(xRange, 100*(yld.(10.0, xRange) .- yldRiskNeutral.(10.0, xRange)),

label="10-year",ylims=(-1,1),color="#edad14")

[9]:

31

This shows that term premia in such a model with a time-varying consumption drift are negative,
very small, and constant.

32

Example 2 – One state variable

Time-Varying Consumption Diffusion – Zero-Coupon Bond

The state variable is now associated with the consumption diffusion unlike example in which it
was associated with consumption drift. Given a CRRA utility function the SDF process can be
computed, inserted in the pricing equation and then solved using a Feynman-Kac formula. The
modified state variable follows the process:

dx̂t =
(
− log ϕ(x̄− x̂t) + ρcxσctσx

)
dt+ σxdWxt

While the state variable is not modified when there is no correlation between the process for con-
sumption and the process for the state variable:

dxt = − log ϕ(x̄− xt)dt+ σxdWxt

In order to get the price of the zero-coupon security a process for the integral of the short-term rate
will also be needed:

dI = r(x̄t)dt

Import the packages
[1]: import SDFPricing as sdf

import StochasticDiffEq as sde # this is needed in order to specify the algorithm

Define the parameters
[2]: cs = (

phi = 0.92, # mean reversion
xbar = 0.0, # long-run mean
rho = 0.01, # time preference parameter
gamma = 2, # risk aversion
muc0 = 0.005, # mean of consumption drift
sigmac0 = 0.04, # consumption diffusion ###- higher compared to example 1
sigmax = 0.5, # state variable diffusion ###- higher compared to example 1
rhocx = -0.3 # correlation between consumption and state variable

);

Drift and Diffusion of the processes I also include the unmodified process which will corre-
spond to “risk-neutral pricing”. By comparing normal pricing with risk-neutral pricing it is possible
to compute excess returns.

[3]: ###- now consumption diffusion is a non-linear function of the state,
###- given that it needs to be positive.
###- I use this function because the simple exponential can get too high for␣
↪→some samples.

sigmac(x,c) = c.sigmac0*(x<0 ? 2/(1+exp(-2x)) : 4/(1+exp(-x))-1)
mu0(x,c) = -log(c.phi)*(c.xbar-x) # drift of unmodified state

33

sigma(x,c) = c.sigmax; # diffusion of modified and unmodified state
mu(x,c) = mu0(x,c)-c.rhocx*c.gamma*sigmac(x,c)*sigma(x,c) # drift of modified␣
↪→state

[3]: mu (generic function with 1 method)

Short-term rate function
[4]: r(x,c) = c.rho+c.gamma*c.muc0-c.gamma^2*sigmac(x,c)^2/2;

r(x) = r(x,cs);

Define setup consistent with SDE solution in Julia
[5]: function drift(du,u,p,t,c)

du[1] = mu0(u[1],c)
du[2] = mu(u[2],c)
du[3] = r(u[1],c)
du[4] = r(u[2],c)

end
drift(du,u,p,t) = drift(du,u,p,t,cs);
function diffusion(du,u,p,t,c)

du[1] = sigma(u[1],c)
du[2] = sigma(u[2],c)
du[3] = 0.0
du[4] = 0.0

end
diffusion(du,u,p,t) = diffusion(du,u,p,t,cs);

Define the Problem and SolutionSettings variables
[6]: prob = sdf.

↪→Problem(drift=drift,diffusion=diffusion,numNoiseVariables=1,outVariables=[3,4],
terminalFunction=(ik, x, y, z) -> exp(-x));
xRange = -2.0:0.25:2.0;
sett = sdf.SolutionSettings(xRanges=[xRange,], initialValues=[[x, x, 0.0, 0.0]␣
↪→for x in xRange],

algorithm=sde.LambaEM(), pathsPerInitialValue=20000, tRange=0.0:1.0:10.0);

Solve Problem and Define Yield
[7]: ((bondPriceRiskNeutral,bondPrice),) = sdf.solve(prob, sett);

yld(t,x) = -log(bondPrice(t,x))/t;
yldRiskNeutral(t,x) = -log(bondPriceRiskNeutral(t,x))/t;

Plot the yield
[8]: # colors: "#0075d6", "#edad14", "#a3e3ff", "#9c0000"

import Plots as plt
plt.default(titlefont= (14,"Computer Modern"),legendfont=(8,"Computer Modern"),

tickfont=(8,"Computer Modern"),guidefont=(10,"Computer Modern"))
plt.plot(xRange .|>x->100*sigmac(x,cs), xRange .|> x->100*r(x), title="Yields",

34

xlabel="consumption diffusion (%)",label="short-term␣
↪→rate",color="#0075d6",ylabel="%")

plt.plot!(xRange .|>x->100*sigmac(x,cs), 100*yld.(5.0, xRange),␣
↪→label="5-year",color= "#edad14")

plt.plot!(xRange .|>x->100*sigmac(x,cs), 100*yld.(10.0, xRange),␣
↪→label="10-year",color="#a3e3ff")

[8]:

Plot the term premium
[9]: plt.plot(xRange .|>x->100*sigmac(x,cs), 100*(yld.(5.0, xRange) .- yldRiskNeutral.

↪→(5.0, xRange)),title="Term Premia",
xlabel="consumption diffusion (%)",label="5-year",color="#0075d6",ylabel="%")

plt.plot!(xRange .|>x->100*sigmac(x,cs), 100*(yld.(10.0, xRange) .-␣
↪→yldRiskNeutral.(10.0, xRange)),

label="10-year",color="#edad14")

[9]:

35

This shows that term premia are state-dependent when consumption diffusion is time-varying. They
can also get larger in absolute value when consumption volatility is relatively high.

36

Example 3 – One state variable

Time-Varying Drift – Price Consumption Ratio

Here the setup is exactly the same as in example 1, but now I calculate the price consumption
ratio instead of the price of zero coupon bond. By changing the values of the parameters it is also
possible to compute a more general price-dividend ratio, for an asset that does not have the same
dividend process as consumption. The modified process in this case is:

dx̃t =
(
− log ϕ(x̄− x̃t) + ρcxσcσx + ρxDσxσD

)
dt+ σxdWxt

In order to get the price of the zero-coupon security a process for the integral of the short-term rate
will also be needed:

dI = r(x̃t)dt

Import the packages
[1]: import SDFPricing as sdf

import StochasticDiffEq as sde # this is needed in order to specify the algorithm

Define the parameters
[2]: cs = (

phi = 0.92, # mean reversion
xbar = 0.0, # long-run mean
rho = 0.02, # time preference parameter
gamma = 2, # risk aversion
muc0 = 0.01, # mean of consumption drift
sigmac = 0.01, # consumption diffusion
sigmax = 0.005, # state variable diffusion
rhocx = 0.3, # correlation between consumption and state variable
sigmaD = 0.02, # dividend diffusion ###- added compared to example 1
muD = 0.02, # dividend drift ###- added compared to example 1
rhoxD = 0.5, # correlation between dividends and state variable ###- added␣

↪→compared to example 1
rhocD = 0.4 # correlation between dividends and consumption ###- added␣

↪→compared to example 1
sigmaD = 0.01, # dividend diffusion ###- case of consumption perpetuity
muD = 0.01, # dividend drift ###- case of consumption perpetuity
rhoxD = 0.3, # correlation between dividends and state variable ###- case of␣

↪→consumption perpetuity
rhocD = 1.0 # correlation between dividends and consumption ###- case of␣

↪→consumption perpetuity
);

Drift and Diffusion of the processes I also include the unmodified process which will corre-
spond to “risk-neutral pricing”. By comparing normal pricing with risk-neutral pricing it is possible
to compute excess returns.

37

[3]: # diffusion of modified state
sigma(x,c) = c.sigmax;
drift of modified state
mu(x,c) = -log(c.phi)*(c.xbar-x)-c.rhocx*c.gamma*c.sigmac*sigma(x,c)+c.
↪→rhoxD*sigma(x,c)*c.sigmaD

[3]: mu (generic function with 1 method)

Short-term rate function
[4]: r(x,c) = c.rho+c.gamma*(c.muc0+x)-c.gamma^2*c.sigmac^2/2;

r(x) = r(x,cs);
muD(x) = cs.muD+x; #- case of consumption perpetuity
muD(x) = cs.muD; #- perpetuity with constant dividend drift
rmod(x,c) = r(x,c)-(muD(x)-c.gamma*c.rhocD*c.sigmac*c.sigmaD);
rmod(x) = rmod(x,cs);

Define setup consistent with SDE solution in Julia
[5]: function drift(du,u,p,t,c)

du[1] = mu(u[1],c)
du[2] = rmod(u[1],c)

end
drift(du,u,p,t) = drift(du,u,p,t,cs);
function diffusion(du,u,p,t,c)

du[1] = sigma(u[1],c)
du[2] = 0.0

end
diffusion(du,u,p,t) = diffusion(du,u,p,t,cs);

Define the Problem and SolutionSettings variables In the theory I state that the price
consumption ratio is computed from the integral over all consumption strip maturities. In practice
it is not possible to integrate to infinity. So, I compute consumption strips up to a maturity of 300
years.

[6]: prob = sdf.
↪→Problem(drift=drift,diffusion=diffusion,numNoiseVariables=1,outVariables=[2],

terminalFunction=(ik, x, y, z) -> exp(-x));
xRange = -0.05:0.006:0.05;
tRange = 0.0:5.0:300.0;
sett = sdf.SolutionSettings(xRanges=[xRange,], initialValues=[[x, 0.0] for x in␣
↪→xRange],

algorithm=sde.LambaEM(), pathsPerInitialValue=5000, tRange=tRange);
add the settings in order to compmute price-dividend ration of the continuous␣
↪→payoff security

sett2 = sdf.SolutionSettings(sett; continuousPayoffVars=[2]);

Solve Problem, Get Yield and Price Consumption Ratio

38

[7]: ((consumptionStrip,),(priceConsumptionRatio,)) = sdf.solve(prob, sett2);

Get the Return of the Consumption Perpetuity The calculation requires the computation
of the first and second derivatives of the price consumption ratio with respect to the state of the
economy.

[8]: (DPC,D2PC) = sdf.derivatives(priceConsumptionRatio);
ret(x) = (DPC(x)*(mu(x, cs) + sigma(x, cs) * cs.sigmac * cs.rhocx) +

D2PC(x)* sigma(x, cs)^2/2.0 + 1.0)/priceConsumptionRatio(x) + muD(x);

Plot the Consumption Strip Term Structure
[9]: import Plots as plt

colors: "#0075d6", "#edad14", "#a3e3ff", "#9c0000", "#000000"
plt.default(titlefont= (14,"Computer Modern"),legendfont=(8,"Computer Modern"),

tickfont=(8,"Computer Modern"),guidefont=(10,"Computer Modern"))
plt.plot(tRange, consumptionStrip.(tRange, -0.04),color="#0075d6",

title="Consumption Strip Price Term Structure", xlabel="years",label="Cons.␣
↪→drift=-%5")

plt.plot!(tRange, consumptionStrip.(tRange, -0.01),label="Cons.␣
↪→drift=-%3",color="#edad14")

plt.plot!(tRange, consumptionStrip.(tRange, 0.0),label="Cons.␣
↪→drift=0%",color="#a3e3ff")

plt.plot!(tRange, consumptionStrip.(tRange, 0.01),label="Cons.␣
↪→drift=%3",color="#9c0000")

plt.plot!(tRange, consumptionStrip.(tRange, 0.04),label="Cons.␣
↪→drift=%5",color="#000000")

[9]:

39

It can be seen that for all values of the state variable the price of the securities comes close to 0 for
maturities as long as 300 years.

Plot the Price Consumption Ratio
[10]: plt.plot(xRange, priceConsumptionRatio(xRange), legend=false,

title="Price-Consumption Ratio",color="#0075d6", xlabel="Consumption Drift␣
↪→(%)")

[10]:

40

[11]: plt.plot(xRange, DPC.(xRange),
title="Derivatives of Price-Consumption Ratio",label="First␣

↪→derivative",color="#0075d6")
plt.plot!(xRange[2:end-1], D2PC.(xRange[2:end-1]),label="Second␣
↪→derivative",color="#edad14",xlabel="consumption drift (%)")

[11]:

41

Plot the Return
[12]: plt.plot(xRange[2:end-1], 100*ret.(xRange[2:end-1]), label="consumption␣

↪→perpetuity",
title="Expected Return", color="#0075d6",xlabel="consumption drift␣

↪→(%)",ylabel="%")
plt.plot!(xRange[2:end-1], 100*r.(xRange[2:end-1]),

label="short-term rate",color="#edad14")

[12]:

42

As expected in the standard model with time-varying consumption drift the premium compared to
the short-term rate is almost zero.

43

Example 4 – One state variable

Time-Varying Consumption Drift – Price Consumption Ratio

Here the setup is exactly the same as in example 2, but now I calculate the price consumption ratio
instead of the price of zero coupon bond. The modified process in this case is:

dx̃t =
(
− log ϕ(x̄0 − x̃t) + ρcxσctσx + ρxDσxσD

)
dt+ σxdWxt

In order to get the price of the zero-coupon security a process for the integral of the short-term rate
will also be needed:

dI = r(x̃t)dt

Import the packages
[1]: import SDFPricing as sdf

import StochasticDiffEq as sde # this is needed in order to specify the algorithm

Define the parameters
[2]: cs = (

phi = 0.92, # mean reversion
xbar = 0.0, # long-run mean
rho = 0.02, # time preference parameter
gamma = 2.0, # risk aversion
muc0 = 0.005, # mean of consumption diffusion
sigmac = 0.08, # consumption diffusion
sigmax = 0.5, # state variable diffusion
rhocx = -0.3, # correlation between consumption and state variable
sigmaD = 0.10, # dividend diffusion ###- added compared to example 1
muD = 0.01, # dividend drift ###- added compared to example 1
rhoxD = -0.5, # correlation between dividends and state variable ###-␣

↪→added compared to example 1
rhocD = 0.4 # correlation between dividends and consumption ###- added␣

↪→compared to example 1
sigmaD = 0.08, # dividend diffusion ###- case of consumption perpetuity
muD = 0.005, # dividend drift ###- case of consumption perpetuity
rhoxD = -0.3, # correlation between dividends and state variable ###- case␣

↪→of consumption perpetuity
rhocD = 1.0 # correlation between dividends and consumption ###- case of␣

↪→consumption perpetuity
);

Drift and Diffusion of the processes I also include the unmodified process which will corre-
spond to “risk-neutral pricing”. By comparing normal pricing with risk-neutral pricing it is possible
to compute excess returns.

44

[3]: ###- now consumption diffusion is a non-linear function of the state,
###- given that it needs to be positive.
###- I use this function because the simple exponential can get too high for␣
↪→some samples.

sigmac(x,c) = c.sigmac*(x<0 ? 2/(1+exp(-2x)) : 4/(1+exp(-x))-1);
sigmac(x) = sigmac(x,cs);
sigmaD(x,c) = defineSomeFunctionOf(x,c); #- general dividend diffusion
sigmaD(x,c) = sigmac(x,c); #- case of consumption perpetuity
sigma(x,c) = c.sigmax; # diffusion of modified state
mu(x,c) = -log(c.phi)*(c.xbar-x)-c.rhocx*c.gamma*sigmac(x,c)*sigma(x,c)+c.
↪→rhoxD*sigma(x,c)*sigmaD(x,c) ; # drift of unmodified state

Short-term rate function
[4]: r(x,c) = c.rho+c.gamma*c.muc0-c.gamma^2*sigmac(x,c)^2/2;

r(x) = r(x,cs);
muD(x) = cs.muD; # perpetuity with constant dividend drift
rmod(x,c) = r(x,c)-(muD(x)-c.gamma*c.rhocD*sigmac(x,c)*sigmaD(x,c));
rmod(x) = rmod(x,cs);

Define setup consistent with SDE solution in Julia
[5]: function drift(du,u,p,t,c)

du[1] = mu(u[1],c)
du[2] = rmod(u[1],c)

end
drift(du,u,p,t) = drift(du,u,p,t,cs);
function diffusion(du,u,p,t,c)

du[1] = sigma(u[1],c)
du[2] = 0.0

end
diffusion(du,u,p,t) = diffusion(du,u,p,t,cs);

Define the Problem and SolutionSettings variables
[6]: prob = sdf.

↪→Problem(drift=drift,diffusion=diffusion,numNoiseVariables=1,outVariables=[2],
terminalFunction=(ik, x, y, z) -> exp(-x));
xRange = -2.0:0.4:2.0;
tRange = 0.0:5.0:300.0;
sett = sdf.SolutionSettings(xRanges=[xRange,], initialValues=[[x, 0.0] for x in␣
↪→xRange],

algorithm=sde.LambaEM(), pathsPerInitialValue=5000, tRange=tRange);
add the settings in order to compmute price-dividend ration of the continuous␣
↪→payoff security

sett2 = sdf.SolutionSettings(sett; continuousPayoffVars=[2]);

Solve Problem and Define Yield
[7]: ((consumptionStrip,),(priceConsumptionRatio,)) = sdf.solve(prob, sett2);

45

Get the Return of the Consumption Perpetuity The calculation requires the computation
of the first and second derivatives of the price consumption ratio with respect to the state of the
economy.

[8]: (DPC,D2PC) = sdf.derivatives(priceConsumptionRatio);
ret(x) = (DPC(x)*(mu(x, cs) + sigma(x, cs) * sigmac(x,cs) * cs.rhocx) +

D2PC(x)* sigma(x, cs)^2/2.0 + 1.0)/priceConsumptionRatio(x) + muD(x);

In the theory I state that the price consumption ratio is computed from the integral over all con-
sumption strip maturities. In practice it is not possible to integrate to infinity. So, I compute
consumption strips up to a maturity of 300 years.

It can be seen that for all values of the state variable the price of the securities comes close to 0 for
maturities as long as 300 years.

Plot the Price Consumption Ratio
[9]: import Plots as plt

plt.default(titlefont= (14,"Computer Modern"),legendfont=(8,"Computer Modern"),
tickfont=(8,"Computer Modern"),guidefont=(10,"Computer Modern"))

plt.plot(100*sigmac.(xRange), priceConsumptionRatio(xRange), legend=false,
title="Price-Consumption Ratio",color="#0075d6",ylims = (0.0, 50.0),␣

↪→xlabel="consumption diffusion (%)")

[9]:

Plot the Return

46

[10]: plt.plot(100*sigmac.(xRange[2:end-1]), 100*ret.(xRange[2:end-1]),␣
↪→label="Consumption perpetuity",

title="Expected Return", color="#0075d6", xlabel="consumption diffusion␣
↪→(%)",ylabel="%")

plt.plot!(100*sigmac.(xRange[2:end-1]), 100*r.(xRange[2:end-1]),
label="Short-term rate",color="#edad14")

[10]:

It turns out that for a value of gamma=2 the effects cancel out and the price consumption ratio
constant. However, there is still an expected return due to the dividend and the equity premium is
large and increasing as volatility increases, due to the falling risk-free rate.

47

Example 5 – Two state variables

Time-Varying Drift and Diffusion – Zero-Coupon Bond

Here the setup is more complicated, having two state variables. Both consumption drift and diffusion
are simultaneously time-varying. The modified processes that will give the price of the zero coupon
security are the following (where x̂1 and x̂2 revert to x̄1 and x̄2 respectively):

dct = µctdt+σct(1−|ρc1|−|ρc2|)dWct+σctρcx1dWx1t+σctρcx1dWx2tdx̂1t =
(
−log ϕ·(x̄1−x̂1t)+ρcx1σctσ1x

)
dt+σx1

1

1 + ρ12
dWx1t+σx1

ρ12
1 + ρ12

dWx2tdx̂2t =
(
−log ϕ·(x̄2−x̂2t)+ρcx2σctσx2

)
dt+σx2

ρ21
1 + ρ21

dWx1t+σx2
1

1 + ρ21
dWx2t

where Wc1, Wx1 and Wx2 are independent and:

E[dctdx̄1t] =

(
ρcx1

1

1 + ρ12
+ ρcx2

ρ12
1 + ρ12

)
σctσx1dt ≊ ρcx1σctσx1dt

E[dctdx̄2t] =

(
ρcx2

1

1 + ρ21
+ ρcx1

ρ21
1 + ρ21

)
σctσx2dt ≊ ρcx2σctσx2dt

E[dx̄1tdx̄2t] = σx1σx2
ρ21 + ρ12

1 + ρ12 + ρ21 + ρ12ρ21
dt ≊ (ρ12 + ρ21)σx1σx2dt

and the approximate equations are valid if ρ12 and ρ21 are small.

In order to get the price of the zero-coupon security a process for the integral of the short-term rate
will also be needed:

dI = r(x̂1t, x̂2t)dt

Import the packages
[1]: import SDFPricing as sdf

import StochasticDiffEq as sde # this is needed in order to specify the algorithm

[Info: Precompiling SDFPricing
[8f91c045-db67-4ada-b18f-1d80840c3158]

Define the parameters
[2]: cs = (

phi1 = 0.91, # mean reversion
phi2 = 0.96, # mean reversion
xbar1 = 0.0, # long-run mean
xbar2 = 0.0, # long-run mean
rho = 0.02, # time preference parameter
gamma = 2.0, # risk aversion
muc = 0.005, # mean of consumption drift
sigmac = 0.08, # mean of consumption diffusion
sigmax1 = 0.005, # volatility
sigmax2 = 0.2, # volatility
rhocx1 = 0.0, # correlation parameter

48

rhocx2 = -0.6, # correlation parameter
rho12 = 0.1, # correlation parameter
rho21 = 0.1 # correlation parameter
);

Drift and Diffusion of the processes I also include the unmodified process which will corre-
spond to “risk-neutral pricing”. By comparing normal pricing with risk-neutral pricing it is possible
to compute excess returns.

[3]: ###- now consumption diffusion is a non-linear function of the state,
###- given that it needs to be positive.
###- I use this function because the simple exponential can get too high for␣
↪→some samples.

sigmac(x,c) = c.sigmac*(x<0 ? 2/(1+exp(-2x)) : 4/(1+exp(-x))-1);
muc(x,c) = c.muc + x;
sigmac(x) = sigmac(x,cs);
sigma1_1(x,c) = c.sigmax1/(1+c.rho12);
sigma1_2(x,c) = c.sigmax1*c.rho12/(1+c.rho12);
sigma1(x,c) = sigma1_1(x,c)+sigma1_2(x,c);
sigma2_1(x,c) = c.sigmax2*c.rho21/(1+c.rho21);
sigma2_2(x,c) = c.sigmax2/(1+c.rho21);
sigma2(x,c) = sigma2_1(x,c)+sigma2_2(x,c);
mu1(x,c) = -log(c.phi1)*(c.xbar1-x)-c.gamma*sigmac(x,c)*(sigma1_1(x,c)*c.
↪→rhocx1+sigma1_2(x,c)*c.rhocx2); # drift of modified state

mu2(x,c) = -log(c.phi2)*(c.xbar2-x)-c.gamma*sigmac(x,c)*(sigma2_1(x,c)*c.
↪→rhocx1+sigma2_2(x,c)*c.rhocx2); # drift of modified state

mu10(x,c) = -log(c.phi1)*(c.xbar1-x); # drift of unmodified state
mu20(x,c) = -log(c.phi2)*(c.xbar2-x); # drift of unmodified state

Short-term rate function
[4]: r(x1,x2,c) = c.rho+c.gamma*muc(x1,c)-c.gamma^2*sigmac(x2,c)^2/2;

r(x1,x2) = r(x1,x2,cs);

Define setup consistent with SDE solution in Julia
[5]: function drift(du,u,p,t,c)

du[1] = mu1(u[1],c)
du[2] = mu2(u[2],c)
du[3] = mu10(u[3],c)
du[4] = mu20(u[4],c)
du[5] = r(u[1],u[2],c)
du[6] = r(u[3],u[4],c)

end
drift(du,u,p,t) = drift(du,u,p,t,cs);
function diffusion(du,u,p,t,c)

du[1, 1] = sigma1_1(u[1], c)
du[1, 2] = sigma1_2(u[1], c)

49

du[2, 1] = sigma2_1(u[2], c)
du[2, 2] = sigma2_2(u[2], c)
du[3, 1] = sigma1_1(u[3], c)
du[3, 2] = sigma1_2(u[3], c)
du[4, 1] = sigma2_1(u[4], c)
du[4, 2] = sigma2_2(u[4], c)
du[5, 1] = 0.0
du[5, 2] = 0.0
du[6, 1] = 0.0
du[6, 2] = 0.0

end
diffusion(du,u,p,t) = diffusion(du,u,p,t,cs);

Define the Problem and SolutionSettings variables
[6]: prob = sdf.

↪→Problem(drift=drift,diffusion=diffusion,numNoiseVariables=2,outVariables=[5,6],
terminalFunction=(ik, x, y, z) -> exp(-x),diagonalNoise=false);
xRanges = [-0.03:0.005:0.03,-2.0:0.4:2.0];
tRange = 0.0:1.0:20.0;
sett = sdf.SolutionSettings(xRanges=xRanges, initialValues=vcat([[x, y,x,y, 0.
↪→0,0.0] for y in xRanges[2] for x in xRanges[1]]),

algorithm=sde.LambaEM(), pathsPerInitialValue=5000, tRange=tRange);

Solve Problem and Define Yield
[7]: ((bondPrice,riskNeutralPrice),) = sdf.solve(prob, sett);

yld(t,x1,x2) = -log(bondPrice(t,x1,x2))/t;
yldRiskNeutral(t,x1,x2) = -log(riskNeutralPrice(t,x1,x2))/t;

Plot the Yield in 3D
[10]: import Plots as plt

import PlotlyJS as pltjs
coordinates = pltjs.surface(

z=[100*yld(10.0, x1, x2) for x1 in xRanges[1], x2 in xRanges[2]],␣
↪→x=xRanges[1],

y=100*sigmac.(xRanges[2]),
showscale=false)

layout = pltjs.Layout(
width=800, height=350,
title_x=0.5,
titlefont_size="16",
scene_aspectratio=pltjs.attr(x=1, y=1, z=0.5),
scene=pltjs.attr(

xaxis=pltjs.attr(title="cons. drift"),
yaxis=pltjs.attr(title="cons. diffusion"),
zaxis=pltjs.attr(title="yield"),

50

camera=pltjs.attr(
center=pltjs.attr(x=0.3, y=0, z=-0.40),
eye=pltjs.attr(x=-.95, y=-1.25, z=0.65)

)
),
font=pltjs.attr(family="Computer Modern", size=12, color="black"),
margin=pltjs.attr(l=0, r=0, b=0, t=0, pad=0))

pltjs.plot([coordinates], layout)

[10]:

[9]: # colors: "#0075d6", "#edad14", "#a3e3ff", "#9c0000"
import Plots as plt
x1 = 0.0
plt.default(titlefont= (14,"Computer Modern"),legendfont=(8,"Computer Modern"),

tickfont=(8,"Computer Modern"),guidefont=(10,"Computer Modern"))
plt.plot(100*sigmac.(xRanges[2]), xRanges[2] .|> x2->100*r(x1,x2),␣
↪→title="Yields",

xlabel="consumption diffusion (%)",ylabel="%",label="short-term␣
↪→rate",color="#0075d6")

plt.plot!(100*sigmac.(xRanges[2]), 100*yld.(5.0, x1,xRanges[2]),␣
↪→label="5-year",color= "#edad14")

plt.plot!(100*sigmac.(xRanges[2]), 100*yld.(10.0, x1,xRanges[2]),␣
↪→label="10-year",color="#a3e3ff")

plt.plot!(100*sigmac.(xRanges[2]), 100*yldRiskNeutral.(5.0, x1,xRanges[2]),␣
↪→label="5-year risk-neutral",color= "#edad14",style=:dash)

plt.plot!(100*sigmac.(xRanges[2]), 100*yldRiskNeutral.(10.0, x1,xRanges[2]),␣
↪→label="10-year risk-neutral",color="#a3e3ff",style=:dash)

51

[9]:

Focusing on one state variable shows that the results are similar to the single variable case.

52

	Introduction
	Package Description
	Theory
	Zero Coupon Bond
	Price-Dividend Ratio

	Implementation

	Examples
	One State Variable
	Time-Varying Consumption Drift – Zero-Coupon Security
	Time-Varying Consumption Diffusion - Zero-Coupon Security
	Time-Varying Consumption Drift - Dividend-Paying Security
	Time-Varying Consumption Diffusion - Dividend-Paying Security

	Two State Variables

	Application
	Case 1: Time-Varying Consumption Drift
	Case 2: Time-Varying Consumption Diffusion

	Conclusion
	Multivariable formulas
	Documentation
	My Examples
	Examples

