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Abstract
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equity premium puzzle, (ii) the risk-free rate puzzle, (iii) the bond premium

puzzle, and (iv) the predictability of aggregate stock market returns with

price-dividend ratios. Furthermore, it is argued that stochastic volatility of

the kind introduced in this article is a necessary ingredient for explaining
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1 Introduction

A series of asset pricing puzzles have been documented and studied within macrofi-

nancial models. These models typically rely on a representative consumer. However,

as indicated by various strands of literature, the marginal investor likely differs

from the representative household. First, it has long been known that regular

households have limited stock market participation (for example Haliassos and

Bertaut 1995; Campbell 2006). Next, there is a supply and demand driven ap-

proach to asset pricing, whose success shows that agents, such as arbitrageurs,

have a special role in the pricing process (for example Vayanos and Vila 2021).

In addition, the intermediary asset pricing approach takes this further, and uses

financial intermediaries as marginal investors (for example He and Krishnamurthy

2013).

In the current article, intermediaries are modelled as consumers with an ex-

ogenous consumption process, and it is shown that an explanation of basic asset

pricing puzzles arises naturally. The main ingredient offered by the intermediary

perspective is the high consumption volatility of the investor. Intuitively, consump-

tion volatility can become large because intermediaries can get highly exposed to a

particular source of risk when it associated with especially lucrative investment

opportunities. This channel can yield positive risk premia on both real bonds and

equity. Next, the intermediary perspective also provides a rationale, explaining

why not just stocks but also bonds have a positive risk premium. In particular, this

is related to the fact that the wealth of intermediaries can rise when interest rates

fall, making bonds perform well in good times and badly in bad times. This makes

bonds genuinely risky for marginal investors, and for that reason they command a

positive premium.

Most asset pricing puzzles are associated with statistics observed in the data,

which are not easily explained by baseline macroeconomic models. In addition,

these statistics are related to central economic variables that are relevant for

both asset pricing and the macroeconomy. The issue arises, because the models

typically generate corresponding statistics, that are either qualitatively different or

significantly different in magnitude than the data. The puzzles that are addressed in

this article have been demonstrated in the literature.1 The equity premium puzzle

was first introduced by Mehra and Prescott (1985), who showed that excess returns

on the stock market can’t be explained with moderate values of risk aversion by the

standard consumption-based model, when calibrated using aggregate consumption

1A good summary of these puzzles is provided in Gabaix (2012).
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data. In addition, trying to explain the equity premium puzzle with high risk

aversion leads to an extremely variable risk-free rate, which is also inconsistent with

the data, and is referred to as the risk-free rate puzzle (Weil 1989). Apart from

stocks, long-term bonds also exhibit positive excess returns, which are large and

variable in time, while most standard models predict excess returns for bonds that

are negative and small in absolute value. This is the bond premium puzzle (Backus,

Gregory and Zin 1989).2 Originally, it was introduced for nominal bonds, but real

bonds also have the same critical features (Abrahams, Adrian, Crump, Moench and

Yu 2016; d’ Amico, Kim and Wei 2018; Pflueger and Viceira 2016). While the bond

premium puzzle usually refers to the difficulty of matching both the level of excess

premia and their variability/predictability, the equity premium puzzle only refers

to the level of equity premia. Nevertheless, aggregate stock market returns are not

only high but they are also predictable from price-dividend ratios (Campbell and

Shiller 1988). In the current article, by using the intermediary perspective, all of

these puzzles are naturally explained. Indeed, it is argued that a high consumption

volatility is part of almost all explanations of these puzzles. For example, limited

stock market participation (Basak and Cuoco 1998), intermediary asset pricing (He

and Krishnamurthy 2013), and supply and demand driven explanations (Vayanos

and Vila 2021) all generate marginal investors with high time-varying volatility

in consumption (or wealth). Especially for the bond premium puzzle, the only

alternative to a high consumption volatility is a high time-varying risk aversion,

such as in habit models (Campbell and Cochrane 1999; Wachter 2006).3

In the model, there is one state variable that simultaneously and positively

affects the consumption drift and diffusion. Intuitively, this state variable reflects

investment opportunities, that are available to the marginal investor. Crucially,

these investment opportunities do not arise due to changes in fundamentals, but

they arise because interest rates are changing. When the value of the state variable

is high, investment opportunities are favorable. By pursuing these opportunities,

the marginal investor also increases the risk of her portfolio, which leads at the

same time to a higher consumption volatility, and a higher consumption drift.

Given a high time-varying consumption volatility of the marginal investor, risk

premia also become high in absolute value and time-varying. This provides an

explanation for the equity premium puzzle. In addition, as changes in consumption

2The bond premium puzzle in the literature often refers to term premia. These are excess
returns of long-term bonds over short-term bonds for an investment horizon which is equal to
the maturity of the long-term bond, and they are defined precisely later in the article.

3It is also possible to have explicit time-varying risk aversion, such as in Lettau and Wachter
(2011).

3



volatility explain risk premia, they become an extra source of price volatility, and

by affecting price-dividend ratios they also induce predictability. This provides an

explanation for the apparent predictability of excess returns.

Furthermore, different levels of investment opportunities correspond to different

levels for the risk-free interest rate and different levels of marginal investor wealth.

This is consistent with stochastic changes in the state variable being associated

with stochastic changes in marginal investor consumption.4 In particular, the

model is constructed and calibrated, so that as investment opportunities improve,

the risk-free interest rate falls, and the marginal investor’s wealth and consumption

rises. This implies that long-term bonds carry a positive risk premium, given that

their high performance is associated with good states of the world for the marginal

investor, thus explaining the bond premium puzzle. It may seem counterintuitive

that the risk-free rate falls when investment opportunities improve. However, this

is possible, and not that surprising given that the state variable is not strongly

associated with changes in firms’ fundamentals. Thus, when the instantaneous

risk-free rate falls, it is easier, for example, to borrow and invest in riskier assets,

such as long-term bonds and equity.5 The intuition here is similar to the intuition

described in Vayanos and Vila (2021). Indeed, that article also comments on

the fact that changes in interest rates, such as the ones caused by central banks,

can be a source of income for arbitrageurs, which could be disconnected from

fundamentals. The model does not include inflation, and all quantities are real.

Section 2 introduces the model, Section 3 discusses the calibration, Section 4

presents the results, Section 5 discusses the special case of recursive preferences,

and Section 6 concludes.

2 Model Setup

2.1 One Marginal Investor

Similar to He, Kelly and Manela (2017), the model abstracts from non-marginal

investors, and focuses on one kind of agent, who is also the marginal investor.

Theoretically, this could be the only agent in the economy, but it is more realistic to

think that other agents also exist but do not participate in the same asset market

due to frictions. While it makes more sense to think of the marginal investors

4In other words, the noise processes of consumption and the state variable are correlated.
5Under a different calibration, an improvement in fundamentals could lead to an increase in

the risk-free rate.
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as some kind of financial intermediary, it is also possible to imagine that a small

group of households simultaneously participate in financial markets and have a

high consumption volatility. For example, Ait-Sahalia, Parker and Yogo (2004)

show evidence that high net-worth households have a much higher consumption

volatility than regular households.

2.2 Utility

The lifetime utility of the agent is given by:

U0 = E0

∫ ∞

0

e−ρt
C1−γ
t − 1

1− γ
dt, (1)

where Ct is the consumption flow at time t, γ is the coefficient of relative risk

aversion, and ρ is the time preference rate. In the model, time is continuous,

utility is time-separable, and the utility flow exhibits constant relative risk aversion

(CRRA).

2.3 Consumption Process

The consumption flow Ct is exogenous and follows a stochastic process:

d log(Ct) = dct = µctdt+ σctdWct (2)

µct = µc0 exp(xt)
ζ

σct = σc0 exp(xt)
η

where ct is log consumption, xt is the state variable, Wct is a Wiener process

associated with consumption, µct is the consumption drift, σct is the consumption

diffusion, µc0 is the drift of consumption at the steady state, σc0 is the steady state

consumption diffusion, and ζ and η are parameters that govern the dependence

of the consumption process on the state variable. Both ζ and η are positive,

which implies that both the consumption drift and the consumption diffusion are

increasing in the state variable xt. The most important feature of the consumption

process is its high time-varying volatility. As is shown later, this can generate

a high time-varying equity premium and also a high (at least in absolute value)

time-varying bond premium.

The drift of the consumption process is also assumed to be increasing in the state

variable. This assumption provides a rationale for the time-varying volatility, as the

marginal investor increases the risk of her portfolio when there are better investment
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opportunities. The better investment opportunities induce a higher consumption

drift, and the higher risk increases the volatility of consumption. In order for

bond premia to also be positive, the interest rate must also co-vary negatively

with consumption. This implies that the price of bonds co-varies positively with

consumption, which makes the bonds risky for the marginal investor.

2.4 State Variable

There is only one state variable xt, and it follows a mean reverting process:6

dxt = log(ϕ)xtdt+ σxtdWxt (3)

dWxtdWct = ρcxtdt

where σxt is the state variable diffusion, Wxt is a Wiener process associated with

the state variable, and ρcxt is the correlation between the noise processes for

consumption and the state variable. The drift term shows that the steady state is

at xt = 0, and the process always reverts to the steady state given that 0 < ϕ < 1.7

2.5 Stochastic Discount Factor

Based on the utility function the stochastic discount factor (SDF) is given by:

Λt = e−ρtC−γ
t (4)

Then based on the consumption process, and by applying Itô’s lemma, the dynamics

of the SDF can be derived:8

dΛt
Λt

=
(
− ρ− γµct +

γ2

2
σ2
ct

)
dt− γσctdWct (5)

2.6 Instantaneous Risk-Free Rate

Based on the SDF the instantaneous risk-free rate can be derived:

r(xt)dt = −Et

[
dΛt
Λt

]
=
(
ρ+ γµct −

γ2

2
σ2
ct

)
dt (6)

6ϕ corresponds to the coefficient of an AR(1) process in discrete time.
7This is similar to an AR(1) where xt+1 = ϕxt + ϵt
8The pricing follows the notation and the approach of Cochrane (2009).

6



2.7 Zero-Coupon Bond Pricing

Then, zero-coupon bonds that mature at time T = t + m are priced using the

pricing equation:

E
[
d(ΛtBt(x,m))

]
= 0 (7)

where B(x,m) is the price of a zero-coupon bond with a remaining maturity of m

at time t. The price of the bond is a function of the state variable xt, and maturity

m. Using Itô’s lemma on the bond price, yields the following:

dBt =

(
log(ϕ)xtBx −Bm +

σ2
xt

2
Bxx

)
dt+ σxtBxdWxt, B(x, 0) = 1 (8)

where subscripts on B denote partial derivatives with respect to the corresponding

variable.9 Using the process for the bond price, the pricing equation gives rise to a

partial differential equation (PDE) (time subscripts and the arguments of B are

omitted for brevity):

E
[
d(ΛB)

]
= 0 ⇒ E

[
dΛ

Λ
B + dB +

dΛ

Λ
dB

]
= 0

⇒ −Bm − r(xt)B +
(
log(ϕ)xt − ρcxtγσctσxt

)
Bx +

σ2
xt

2
Bxx = 0 (9)

where Bm is the derivative of the bond price with respect to maturity, Bx is the

derivative of the bond price with respect to the state variable, and Bxx is the second

derivative of the bond price with respect to the state variable. This differential

equation can be solved numerically. In particular, the Feynman-Kac formula as

shown in Appendix A. Based on the expressions above the instantaneous expected

excess return of the bond before maturity can be derived as:

Et

[
dB

B

]
+ Et

[
dΛt
Λt

]
= Et

[
dB

B

]
− rdt︸ ︷︷ ︸

≡Expected Excess Return

= −Et

[
dΛt
Λt

dB

B

]
(10)

⇒ −Bm

B
+ log(ϕ)x

Bx

B
+
σ2
xt

2

Bxx

B
− r = ρcxtγσctσxt

Bx

B

9For simplicity the dependence on time is not explicitly shown, but maturity is connected to
time through ∂/∂t = −∂/∂m.
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And the term premium of the bond can be defined as:10

TP (xt,m) = − 1

m
log

[
B(xt,m)

Et
[
exp

{
−
∫ m
0
r(xt+s)ds

}]] (11)

Intuitively, this expresses the expected annualized excess return of the bond over a

period equal to its remaining maturity. The result in Equation (10) is interesting

because it provides a way to measure the excess return of the bond. In addition,

based on Equation (9) ρcxtγσctσxt can be compared to log(ϕ)xt. The former is the

term premium component, as it drives the term premium, while the latter term

is the expectation component, as it drives deviation of yields from the short-term

rate that is due to expected changes in the short-term in the future. If the term

premium component is negligible in size compared to the expectation component,

then the term premium is zero for practical purposes. So, for example, if the

correlation between the noise processes of consumption and the state variable (ρcxt)

is zero, then the term premium is zero and the expectations hypothesis holds.11

The formula also shows that there is no easy way to generate a sizeable term

premium in this type of model, other than having high consumption volatility or

high risk aversion. Indeed, it is not possible to generate a sizeable positive term

premium in this class of models without a high risk aversion or a high consumption

volatility. An earlier version of this article shows that this is the case by checking a

variety of models. Models that incorporate habit in the utility function (Campbell

and Cochrane 1999; Wachter 2006), can generate a high and positive term premium

but there are states of the world in which effective risk aversion is exceedingly

high.12 In Section 5, it is also shown that models with recursive preferences also

fail in this regard, unless the consumption volatility is high.

10Based on the Feynman-Kac formula, the equation can also be written like: TP (xt,m) =

− 1
m log

[
E∗

t [exp{−
∫ m
0

r(xt+s)ds}]
Et[exp{− ∫ m

0
r(xt+s)ds}]

]
, where the numerator uses the risk-neutral measure.

11Indeed, it holds in its strongest form, as the term premium is exactly zero. In the literature,
the expectations hypothesis usually refers to whether the term premium is changing over time,
and not whether it is exactly zero.

12The earlier version of the article also includes a review of the bond premium puzzle literature.
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2.8 Equity Pricing

Having defined the prices of bonds, a similar approach is used for stocks. First,

stocks are assumed to pay a dividend that follows the process:

dDt

Dt

= µDdt+ σDdWDt (12)

dWDtdWct = ρcDdt, dWDtdWxt = ρxDdt

where Dt is the dividend flow at time t, µD is the drift of the dividend process, σD

is the dividend diffusion, WDt is a Wiener process associated with the dividend

process, ρcD is the correlation between the noises processes for consumption and

the dividend, and ρxD is the correlation between the noises processes for the state

variable and the dividend. For simplicity µD and σD are assumed to be constant.13

Based on the dividend process, a dividend strip security can be constructed which

pays a dividend at a specific point in time, and for each dividend strip we can

define the strip price-dividend ratio, ŝt(xt,m), which according to Itô’s Lemma

follows the process:

dŝt =

(
log(ϕ)xtŝx − ŝmdm+

σ2
xt

2
ŝxxdx

2
t

)
dt+ σxtŝxdWxt (13)

This is the ratio of the price of the dividend strip at time t (notice that at each

point the current price is used and not the expected price at maturity) over the

current dividend at time t. Thus, by definition the price of the dividend strip for

m = 0 is 1. Having this clear terminal condition is useful, and is the reason why

this approach is used.14 Based on the terminal condition, the strip price-dividend

13The model can still be solved in a similar way if they depend on the state variable xt.
14Trying to determine the price-dividend ratio for the stock directly gives an equation that

does not have such a clear terminal equation. So, solving directly a differential equation of the
price-dividend ratio requires the specification of two conditions Chen, Cosimano and Himonas
(2010). As the alternative approach followed here shows, these conditions are not required to
solve the problem.
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ratio, ŝ(xt,m) = Ŝ(xt,m)/Dt, is given by an equation similar to the bond price:15

E
[
d(ΛŜ)

]
= 0

⇒E
[
d(Λ (ŝD)︸︷︷︸

price of

dividend

strip

)
]
= 0 ⇒ E

[
dΛ

Λ
ŝ+ dŝ+

dD

D
ŝ+

dΛ

Λ
dŝ+

dΛ

Λ

dD

D
ŝ+ dŝ

dD

D

]
= 0

⇒− ŝm − (r(x)− µD + ρcDγσctσD)︸ ︷︷ ︸
r̂(xt)

ŝ+ (log(ϕ)xt − ρcxtγσctσxt + ρxDσxtσD) ŝx +
σ2
xt

2
ŝxx = 0

ŝ(xt, 0) = 1 (14)

where D is the dividend paid at time t+m. The differential equation can be solved

in the same way as the bond pricing equation. The risk premium of the dividend

strip can also be derived from the pricing equation:16

Et

[
d(ŝD)

ŝD

]
+ Et

[
dΛt
Λt

]
= Et

[
d(ŝD)

ŝD

]
− r(xt)dt︸ ︷︷ ︸

≡Expected Excess Return

= −Et

[
dΛ

Λ

dŝ

ŝ
+

dΛ

Λ

dD

D

]

(15)

− ŝm
ŝ

+ log(ϕ)x
ŝx
ŝ

+
σ2
xt

2

ŝxx
ŝ

+ µD + ρxDσDσxt
ŝx
ŝ

− r = ρcxtγσctσxt
ŝx
ŝ

+ ρcDγσctσD

Next, by knowing the strip price-dividend ratio, for all maturities m, the stock

price-dividend-ratio can be computed by integrating across all maturities:17

S(xt)

D(xt)
= s(xt) =

∫ ∞

0

ŝ(xt,m)dm (16)

where the stock’s dividend flow matches the dividends paid by the dividend strips.18

The expected excess return of the stock can also be derived by integrating the

15This is slightly abusing notation. To be fully precise, an extra time subscript is required, ie
ŝt(xt,m), in order to specify the timing of the dividend. In this notation, maturity occurs at time
t+m. However, for brevity, maturity is assumed to be given and the time subscript is omitted.

16The risk premium is used equivalently as the expected excess return.
17A similar approach is used in Wachter (2006).
18In the case of a dividend strip, a lump sum amount is paid at a specific point in time, while

the stock pays a dividend flow. For example, in the case of a dividend strip, if D0 = 1 the
dividend strip pays $1 at time t = 0, and, in the case of a stock, if Dt = 1 for all t ∈ (0, 1), then
the stock pays a constant flow of dividends summing up to $1 over the period from t = 0 to t = 1.
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expected excess return of the dividend strip across all maturities:19 20

E

[
d(sD)

sD︸︷︷︸
stock price

]
+

1

s
dt− rdt = −E

[
dΛ

Λ

ds

s
+

dΛ

Λ

dD

D

]
(17)

−1

s
+ log(ϕ)x

sx
s

+
σ2
xt

2

sxx
s

+ µD + ρxDσDσxt
sx
s

− r = ρcxtγσctσxt
sx
s

+ ρcDγσctσD

3 Calibration

Time is measured in years for all relevant parameters.

The state variable is a steady-state-reverting process. The steady state is at

xt = 0. The speed of reversion is regulated by ϕ, which is set equal to 0.92. This

also regulates the autocorrelation of the price-dividend ratio.21 This implies that if

xt = 1, then xt+1 is expected to be roughly equal to 0.92 after a year. The state

variable diffusion is set to σxt = 0.2. With this specification the state variable

spends roughly 95% of the time in the interval (-1,+1).22 So, these values are set

equal to the left and right bounds respectively of the grid of the state variable.23

The time preference parameter is set to ρ = 0.01. The relative risk aversion

parameter is set to γ = 3, which is within the common range used in the literature,

and it is not considered too high.24 The steady state consumption drift of the

marginal investor is set to µc0 = 0.12. This was chosen in order to achieve the

level of risk premia that we see in the data, but it is not implausibly high for

a marginal investor. It is only slightly higher compared to the historic average

return on stocks, and it is plausible to think that marginal investors achieve an

even higher return by leveraging. After choosing the consumption drift, the steady

19Alternatively it can also be found directly through the pricing equation of the stock.
Following Cochrane (2009) the pricing equation for a security with a dividend flow is given by
E
[
d(ΛS)

]
+ ΛDdt = 0, where S is the price of the security, and D is the dividend flow. This

equation can be rearranged to give the expected excess return.
20Here, we are integrating up to infinity, so 1/s is only included, which corresponds to the

constant dividend payment. In the numerical solution a high cutoff is used, but still an extra
term of the form ŝ(x,M)/s is included, where M is the high cutoff maturity.

21This follows Wachter (2013).
22In the actual computations a larger grid is used but these are the bounds used to calibrate

the interest rates, and also the bounds used in the plots of this article.
23The risk-free rate is not set to exact values at the bounds because targeting is not an exact

process and requires trial and error.
24γ = 2 was also tried and it produces more or less similar results for risk premia. However,

the value of 3 was chosen to make the consumption drift of the marginal investor more variable.
In general, it is slightly curious that it is not easy to construct a non-highly volatile risk-free
rate when either consumption drift or consumption diffusion are relatively high and significantly
variable.
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state consumption diffusion is set in such a way so that the risk-free rate at the

steady state is equal to approximately 1%. This is close to historic values of the

risk-free rate, as for example reported in Mehra (2007).25 The targeting of the

risk-free rate is done using Equation (6). This results in σct = 28.67%. This turns

out to be a relatively high value, and even though this is not by construction, it

fits the idea of the model. The reason is that intermediaries have their wealth

invested in financial assets, and they could even be leveraged. So, high asset price

volatility gets translated to consumption volatility. The same equation for the

interest rate, is then again used to set the range of variation of the risk free rate to

about 6% between the two bounds.26 The chosen range roughly matches the level

of variation over the last twenty-five years in the interest rate induced by monetary

policy during tightening and loosening episodes. This exercise results in values for

ζ = 0.07 and η = 0.055.

In the dividend process, µD is set to 2.5%, and σD is set to 11% following Gabaix

(2012).27 The correlation between the dividend and consumption is set to ρcD = 0.1,

which is relatively close to the value used in Campbell and Cochrane (1999).28

The low value is also justified by the fact that in this model consumption changes

are mostly associated with change in the state variable. In a similar vein, the

correlation between the dividend and the state variable is likewise set to ρxD = 0.1.

In general, the parameters chosen for the dividend process are not highly critical,

to generate high risk premia, even though the dividend diffusion does play a small

role in increasing the equity premium. In addition, it should be noted that the

dividend process does not explicitly depend on the state variable. So, there are

no effects from the state variable that are channeled through the dividend process

to either the risk-free rate, the bond price, or the price-dividend ratio.29 Finally,

the correlation between the state variable and consumption is set to ρcxt = 0.9.

This is a high value, and it is connected with the premise of the model that the

state variable reflects investment opportunities. Unexpected changes in the state

25In that article, the estimates reported of the historic real risk-free rate for the USA range
from 0.64% to 3.02%. However, for other countries negative values are also mentioned. For
this reason, a target of 1% was chosen, which is at the lower end of estimates and close to the
preferred estimate by Mehra and Prescott (1985), which is 1.31%

26The exact values are of the risk-free rate are 3.91...% and -2.51...% at the left and right
bound of the state variable respectively.

27In that article, 2.5% was both the expected growth of the dividend and the expected growth
of consumption. Here, it is only the expected growth of the dividends.

28In that article, a value of 0.2 is used.
29This is done for simplicity, in order to make the point of the model clearer, that the state

variable acts through the discount channel. Allowing an explicit dependence of the dividend drift
and diffusion on the state variable would in general not invalidate the results of this study.
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variable lead to changes in the wealth and hence the consumption of the marginal

investor.30 This parameter can drive risk premia, as shown in the previous section.

In addition, its sign determines the sign of the risk premia. Here the intuition is

that as interest rates fall (for non-fundamental reasons), the marginal investor’s

wealth and hence her consumption increases. The same holds true for bonds and

stocks, so both exhibit a positive risk premium.

4 Results

4.1 Risk-Free Rate

Before showing the results relating to risk premia, the behavior of the consumption

process is shown, for different levels of the state variable. Figure 1 illustrates this

behavior. For simplicity, the consumption drift and diffusion are shown compared

to each other, and the state variable which is driving both quantities is not explicitly

shown. This approach is used in the following figures as well. The consumption

diffusion is shown in the x-axis. The range of the drift and the diffusion have been

set in order to match the range of the risk-free rate. This leads to consumption

drift exhibiting small variation, and consumption diffusion exhibiting moderate

variation. Figure 2 shows the risk-free rate as a function of consumption diffusion.

Given that the range of variation of the risk-free rate has been targeted through

the calibration process, there is no risk-free rate puzzle by construction. Despite

the absence of a risk-free rate puzzle, the model is still able to generate a high

equity premium.

4.2 Equity

The results for average stock returns and average excess stock returns based on

simulations are shown in Table 1. Despite its simplicity, the model matches both

the unconditional moment of stock returns and stock excess returns. In both cases,

the estimates deviate less than two standard errors from the historic averages.

The standard errors are reported next to the historic averages, but they have

been computed based on the model.31 This model addresses the equity premium

puzzle, and the only parameter that was used to amplify the equity premium is the

30The reader should keep in mind though that wealth is not explicitly modelled in the current
article.

31From simulating 116 years multiple times and taking the standard deviation of the estimates.
The prediction of the model is based on the average of multiple 116-year simulations.
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Figure 1: Different levels of consumption drift and diffusion, for different levels of
the state variable. The range of variation in the drift and the diffusion has been
set in order to target the variation of the risk-free rate.
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Figure 2: Annual risk-free rate as a function of consumption diffusion. The range
of variation of the risk-free rate is targeted through the calibration process.
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Real Stock Return (%) Risk-Free Rate (%) Stock Risk Premium (%)
Average St. Error Average St. Error Average St. Error

1899-2005
(Mehra-Prescott)

7.67 (1.09) 1.31 (0.66) 6.36 (1.21)

Model 5.86 - 0.94 - 4.88 -

Table 1: Arithmetic Average USA Stock Returns in the data and in the
model.

consumption drift of the marginal investor, which is still kept at a plausible level.

Apart from the equity premium exhibiting a high level, it is also variable in time.

This implies that apart from addressing the equity premium puzzle the model also

exhibits predictability of returns. In particular, in the model, the equity premium

level depends on the state variable. Thus, the state of the economy simultaneously

drives current prices and future expected returns. Hence, it appears as though

combinations of current prices or other economic variables can predict future excess

returns. Table 2 shows that the log dividend-price ratio can predict future stock

returns, and that predictability increases with horizon. Indeed, the model-implied

slopes are close to the historic estimates.32 The nature of the predictability is

further shown in Figure 3, 4, and 5. These figures show the price-dividend ratio,

the expected return of the stock, and the expected excess return as a function

of the consumption diffusion of the marginal investor. The figures show that the

price-dividend ratio can vary significantly for different levels of the consumption

diffusion. In addition, in the model, the figures demonstrate that expected stock

returns are more predictable than stock returns in excess of the short-term rate.33

4.3 Bonds

As was first shown by Backus et al. (1989), the bond premium puzzle suggests that

long-term bonds have a positive risk premium that is significant in size. In addition,

bond term premia have been found to be time-varying and predictable (Fama and

Bliss 1987; Campbell and Shiller 1991; Cochrane and Piazzesi 2005). These results

are based on nominal bonds, but these basic features have also been found to hold

32The R-squared values are not reported. As in the data, they are increasing with horizon,
but they are generally lower in the model. This is not a big issue because the R-squared values
can be amplified by choosing a lower value for σD, and this would not drastically change the
other results.

33Unlike stock return predictability, the model does not generate enough stock return excess
as in the data. The standard deviation of the log price-dividend ratio in the model is 0.045
whereas in the data based on Gabaix (2012) and Campbell (2003) it is 0.33.
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Data Model

Horizon Slope St. Error Slope

1 yr 0.11 (0.053) 0.138

4 yr 0.42 (0.18) 0.503

8 yr 0.85 (0.20) 0.791

Table 2: Predictability of Stock Returns
Following Gabaix (2012), this shows the estimates of the predictive regression
for the stock return rt→t+T = αT + βT log(Dt/Pt) over a specific horizon. Data:
Campbell (2003).

Figure 3: Price-Dividend Ratio of the stock as a function of the consumption
diffusion of the marginal investor.
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Figure 4: Expected Returns of the Stock as a function of the consumption diffusion
of the marginal investor.

Figure 5: Expected Equity Premium as a function of the consumption diffusion of
the marginal investor.
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20-Year Bond Risk Premium (%)
Average St. Error

1926-2022
(Ibbotson)

2.30 (0.46)

Model 2.87 -

Table 3: Arithmetic Average 20-Year US Government Bond Returns in
the data and in the model. Source: Ibbotson Associates Stocks, Bonds,
Bills, and Inflation (SBBI) Yearbook.

for real bonds (Abrahams et al. 2016; d’ Amico et al. 2018; Pflueger and Viceira

2016). As is shown in Table 3, the average excess returns of long-term bonds are

large and fit the data.34 While the data may also contain an inflation risk premium

because the bonds are nominal, in the model bonds are real. This is a significant

result, because it seems to be harder to generate a positive and significant real

excess bond return (or real term premium) compared to generating a high equity

premium.35 For example, long-run risk models are able to generate a high equity

premium, but they do not generate a significant real bond risk premium. In this

model, the marginal investor is (in the background) adjusting her portfolio to take

advantage of changes in interest rates. In addition, her wealth and consumption

react positively to drops in the interest rate, and this makes long-term bonds

actually risky.36 As a result, bonds exhibit a positive risk premium. Figure 6

shows the real yields of zero coupon bonds for different values of the state variable.

The yield curve is upward sloping, and the term premium is in general positive.

In addition, it is possible to see that longer-term bonds have have a significantly

higher return compared to short-term bonds.

While the model captures the level of real bond risk premia, it does not fully

deliver the predictability and the level of variation that we see in the data. Figure

7 shows the decomposition of the real ten-year bond into the term premium and

the risk-neutral yield. The latter is by definition the difference between the yield

and the term premium. As can be seen in the figure, the term premium varies

for different levels of the state variable. However, it does not reach the level of

34The source of the historical data is the Ibbotson Associates Stocks, Bonds, Bills, and Inflation
(SBBI) Yearbook, as presented in Ross, Westerfield and Jordan (2024).

35Term premia and bond excess returns are not exactly the same, but they are closely related.
Term premia are basically the same as excess returns, but they are measured over a longer
horizon.

36While this is not the primary focus of this study, these consumption and wealth changes
could indicate that marginal investors often have conflicting utility changes compared to the
regular households in the economy.
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Figure 6: Real yields of zero-coupon bonds with various maturities.

Figure 7: Decomposition of the real ten-year bond yield into the risk-neutral yield
and the term premium.
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variation that is found in Abrahams et al. (2016) and d’ Amico et al. (2018).37

While it would be favourable to be able to match the full level of variation, that we

see in the data, it is not entirely surprising that this is not possible. In particular,

we know that the yield curve can’t be completely captured with just one state

variable. So, the variability likely requires a slightly richer model. Arguably, this

is not that difficult to deliver in a model with more state variables, because the

harder part is to generate a positive and sizeable real bond term premium.

5 Recursive Preferences

In the main model of this article, CRRA utility is used. In this section, I discuss

the case of recursive utility, to show that it does not generate high and positive

term premia. Indeed this is significant, because there is literature that has shown it

is possible to generate high equity premia with recursive utility (Bansal and Yaron

2004). These are the well-known long-run risk models.38 Long-run risk models are

characterized by a time-varying consumption drift, and possibly a time-varying

consumption diffusion. Such models use a representative agent. So, consumption

drift and the consumption diffusion take values that should be close to what we

observe in aggregate data.

Following Duffie and Epstein (1992), when utility is recursive, the utility

specification is given by:

V0 = E0

∫ ∞

0

F (Ct, Vt)dt (18)

Where Vt is the value function at time t, and F (·, ·) determines flow utility. The

latter is also the aggregator of the recursive utility process, and it is given by:

F (Ct, Vt) =
ρ (1− γ)Vt
1− 1/ψ

( Ct

((1− γ)Vt)
−1/(1−γ)

)1−1/ψ

− 1

 (19)

37As in the data, the model rejects the expectations hypothesis. However, the result of these
regressions do not match the literature exactly. For example, while regressions as in Fama and
Bliss (1987) give a relatively similar slope for low maturities as in that article, regressions as
in Campbell and Shiller (1991) give estimates that are higher than 1 (estimates of 1 coincide
with the expectations hypothesis and the article found negative estimates). Regressions as in
Cochrane and Piazzesi (2005) can’t be easily performed because the different forward variables
are practically collinear, given that the model only has one state variable.

38As has been mentioned before, an earlier version of this article goes through many variations
that show it is not possible to generate high and positive bond term premia.
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Where ψ is the intertemporal elasticity of substitution. The case of CRRA utility is

nested in this specification, and it corresponds to the case where ψ = 1/γ. The SDF

is derived from the expressions for the value function and the aggregator function.

As shown by Tsai and Wachter (2018), the value function can be expressed as:39

Vt =
C1−γ
t e(1−γ)K(xt)

1− γ
(20)

Where Vt increases with K, which is a specific function of xt that captures the full

dependence of the value function on the state variable.40 At the end of this section,

the expression above is justified, and a novel perturbation approximation that

provides a formula for K is provided. Given the expression for the value function,

Ito’s Lemma can be implemented to get to the stochastic differential equation of

the SDFṪhe calculation here follows Chen, Cosimano, Himonas and Kelly (2009).

In particular, the fundamental relationship is:

dΛ

Λ
= FV (Ct, Vt)dt+

dFC(Ct, Vt)

FC(Ct, Vt)
(21)

FC and FV denote partial derivatives of F with respect to consumption and the

value function respectively. The first term on the right-hand side is the derivative

of the flow utility with respect to the value function. The second term can be

computed by applying Ito’s lemma on the derivative of flow utility with respect to

consumption.41 The result is the following:

dΛ

Λ
=

(
ρ(−(1− γψ)e

(1−ψ)K[xt]
ψ − γψ + ψ)

1− ψ
− γµct +

γ2σ2
ct

2
+
γ(γψ − 1)ρcxtσxtσctK

′(xt)

ψ

+
(γψ − 1)(−2ψ log(ϕ)xtK

′(xt) + σ2
xt((γψ − 1)K ′(xt)

2 − ψK ′′(xt)))

2ψ2

)
dt

− (γψ − 1)σxtK
′(xt)

ψ
dWxt − γσctdWct (22)

In the special case of γ = 1/ψ, which corresponds to time-separable utility, the equa-

tion above simplifies to the formula in Equation 5. Also, the stochastic component

39Similar results are common in the literature, see for example Benzoni, Collin-Dufresne and
Goldstein 2011; Kraft, Seiferling and Seifried 2017.

40The model is not solved fully in this section because this is not required for the analysis.
However, the earlier version of the article contains a full solution of the model. In addition,
Melissinos (2023) provides a solution method based on a perturbation expansion of K(·).

41This operation is performed by substituting the value function using Equation (20) and
applying Ito’s lemma based on consumption and the state variable as independent variables.
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relating to consumption (−γσctdWct), is exactly the same as in the time-separable

utility case, and there is an extra component, namely − (γψ−1)σxtK′(xt)
ψ

dWxt, due to

the explicit dependence of the SDF on the state variable.

By using the expression for the SDF we can derive the risk-free rate, the stock

price and the bond price, as was done in the main part of the article. Here we focus

on the bond, in order to show that a positive and significant bond risk premium is

not possible. In particular, the pricing equation for the bond is:

−Bm − r(xt)B +
(
log(ϕ)xt −

(γψ − 1)σ2
xtK

′(xt)

ψ
− ρcxtγσctσxt

)
Bx +

σ2
xt

2
Bxx = 0

(23)

The term premium is primarily driven by the “recursive” term, − (γψ−1)σ2
xtK

′(xt)
ψ

.

It turns out that the sign of this term is such that it produces a negative bond

risk and term premium.42 This holds in the standard case when recursive utility

implies a preference for early resolution of uncertainty.43 So, even though recursive

utility can contribute to generating a high equity premium, and even though it

can contribute in generating a high term premium in absolute value, it cannot

generate a positive term premium. This shows that long-run risk models are not

able to generate positive real term premia, even if recursive utility is used. So,

while Bansal and Shaliastovich (2013) is able to generate positive nominal term

premia by using an inflation channel, the real term premia in that article are still

negative.

6 Conclusion

This article has systematically analysed the performance of a model with respect to

basic macrofinance puzzles, such as the equity premium puzzle, the bond premium

puzzle, and the predictability of stock returns. The model has used a single state

variable that drives investment opportunities, which are simultaneously affecting

the consumption drift and the consumption diffusion of the marginal investor.

This is consistent with the intermediary asset pricing approach to asset pricing, in

which marginal investors are not representative consumers. While a lot of puzzles

can be addressed in this framework, the excess volatility in stock prices and the

42The reason for this is that the sign of this term is the same as the sign of the derivative of the
short-term rate, which in turn determines the sign of Bx. Thus, the full term in the differential
equation always has the same sign.

43This can also be seen in the formula, as early resolution of uncertainty is the condition that
γ > 1/ψ.
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predictability of bond term premia are not fully captured.

The implications of this perspective are significant. Firstly, if it is only possible

to generate realistic asset price movements by assuming that marginal investors are

not representative consumers, this means that intermediaries, or marginal investors,

in general are not investing according to the preferences of regular households. In

addition, it means that they are able to extract excess returns on average from

financial markets in exchange for bearing risk. If regular households are not able

to participate in financial markets due to institutional frictions or barriers, this

implies that marginal investors are able to extract rents from financial markets.

Secondly, it is critical for the conduct of monetary policy, because it implies that

movements in term premia have a limited connection to the consumption of regular

households. So, for instance, when the central bank tries to decrease long-term

bond yields, this may be mostly affecting the economic situation of a small group

of investors and not so much the overall economic situation, which central banks

typically try to affect.44

In further research, it would be interesting to extend the model to capture

asset pricing features more fully. Extensions in this direction could include the

introduction of a second state variable, to try to capture more asset pricing

movements. In addition, it would be interesting to use the model as a tool to

understand historic movements in asset prices. Finally, the marginal investors that

are modelled in this article are best understood as a subset of agents, who are

particularly active in financial markets. Other agents are not explicitly modelled.

In further research, it would be interesting to explicitly model the other agents, in

order to understand why regular households do not seem to fully participate in

financial markets, and how the ordinary households are affected by movements in

asset prices and by the behavior of marginal investors.

44Vayanos and Vila (2021), after a comment by John Cochrane, also make the point that
monetary policy affecting the short-term rate can be viewed as a source of arbitrageur rent.
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A Feynman-Kac Formula

The differential equations arising from the pricing equations for the bond and the

strip price-dividend ratio are solved using the Feynman-Kac formula.

A.1 Feynman-Kac Formula for the Bond Price

Equation 9 is repeated here:

−Bm − r(xt)B +
(
log(ϕ)xt − ρcxtγσctσxt

)︸ ︷︷ ︸
µ̃(xt)

Bx +
σ2
xt

2
Bxx = 0

The Feynman-Kac formula states that the solution to this equation is given by:

B(xt,m) = E

[
exp

(
−
∫ m

0

r(x̃t+s)ds

) ∣∣∣x̃t = xt

]
(24)

dx̃t = µ̃(x̃t)dt+ σxt(x̃t)dWxt (25)

where µ̃(·) is defined by the term multiplying Bx above.

A.2 Feynman-Kac Formula for the Strip Price-Dividend

Ratio

Equation 14 is repeated here:

−ŝm − (r(x)− µD + ρcDγσctσD)︸ ︷︷ ︸
r̂(xt)

ŝ+ (log(ϕ)xt − ρcxtγσctσxt + ρxDσxtσD)︸ ︷︷ ︸
µ̂(xt)

ŝx +
σ2
xt

2
ŝxx = 0

The Feynman-Kac formula states that the solution to this equation is given by:

ŝ(xt,m) = E

[
exp

(
−
∫ m

0

r̂(x̂t+s)ds

) ∣∣∣x̂t = xt

]
(26)

dx̂t = µ̂(x̂t)dt+ σxt(x̂t)dWxt (27)

where r̂(·) is defined by the term multiplying ŝx above and µ̂(·) is defined by the

term multiplying ŝx above.
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